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Abstract

Form-active structures are a more rare building type but very eye-catching due to their slender-
ness, double curvature and overall elegance. From a structural perspective, they are particularly
interesting because their shapes cannot be predefined but necessitate a form-finding step be-
fore the actual structural analysis. Additionally, their flexibility means that they undergo large
deformations when subjected to external loads. This makes them difficult to analyse as finite
element software is based on the assumption of small displacements. Some packages have the
capability of analysing this more advanced behaviour by storing the stress state from a form-
finding step as a separate load case, which are subsequently imposed during the analysis. This
modelling set-up is not easily defined when the system becomes sufficiently complex; it is also
very time consuming, making an exploration of multiple configurations infeasible. The cor-
relation between the form-finding and analysis requires that both steps are performed within
the same software to avoid losing important information, which furthermore has the effect of

isolating the architect from the design process.

This research offers the ability to analyse form-active structures in a much more interactive
environment, which encourages an informed exploration in the early design stage where both
architect and engineer are involved in the process. This is facilitated by the improved stability
of the physics constraint solver “Kangaroo2” developed by Daniel Piker, which makes it possible
to input real material properties and thereby simulate accurate structural behaviour with mean-
ingful output values. The underlying dynamic relaxation solving technique inherently deals with
the large deformations associated with form-active structures. The behaviour of cables, bars,
beams (with rotational symmetric cross section) and simple supports have been implemented as
a plug-in that builds on top of Kangaroo2. Relevant case studies provided by Format Engineers
combined with a collaboration centered around a Smart Geometry workshop have pushed the
developments forward and enhanced the applicability of the design tool in practice.
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Chapter 1

Introduction

This chapter clarifies the meaning of form-active structures and highlights their qualities as well
as the difficulties related to the design and analysis of these structures. From this context, the

overall aim for this research is identified and a structure of the thesis is outlined.

1.1 Definition

The term “form-active” originates from the categorisation of building structures according to
Engel (1997) and is defined as a flexible system, where the shape of the structure in the ideal case
coincides precisely with the flow of forces. As a consequence, the architectural form and space
of these structures are purely defined from the support and loading conditions and thus cannot
be subject to arbitrary free-form design. At the same time this makes them very interesting
and noticeable structures. According to Engel’s definition, form-active structures include cable
nets, tents, pneumatic and arch structures. Since form follows force, these structures are highly
efficient and have the ability to span large distances. However, their flexibility often necessitates
that the system is prestressed in order to reduce the deflections and make sure that the structure
does not become slack under various load scenarios. Frei Otto was one of the pioneers in relation
to form-active structures and the Olympic stadium in Munich from 1972 (Kroll, 2011) as seen

in Figure 1.1.1 is a good example of his incredible work in this context.

Inspired by Engel’s categorisation, the term “bending-active” has more recently been introduced
to describe curved beams or surfaces, which derive their shape from elastic deformation (bending)
of initially straight or planar elements (Lienhard et al., 2013). The ICD /ITKE Research Pavilion
from 2010 (Menges, 2010) is a good example of this type of structure as shown in Figure 1.1.2.
Like for form-active structures, the shape is dependant on the internal force equilibrium but in
this case primarily from bending action rather than tension/compression (as the name indicates).
Bending-active structures are generally characterised by the use of thin cross sections of a

material with low stiffness in order to achieve sufficient curvature without exceeding the material
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Figure 1.1.1 — The Olympic stadium in Munich from 1972 designed by Frei Otto. Copyright Jorge Royan

strength. Even though the initial bending of the elements introduces prestress to the structure,
it is motivated by the simplicity of creating curved elements and it makes transportation easier
as well because the straight elements are more easily packed. Whilst the bending-active term is
relatively new, the technique can be traced much further back in the context of timber gridshells
such as the Multihalle Mannheim from 1974 by Frei Otto (Naicu et al., 2014). Here timber laths
in a 0.5 m grid arrangement were elastically deformed into the intended three dimensional shape.

The differentiation between the terms “form-active” and “bending-active” is useful to make a
distinction between how the system primarily resists the applied loads i.e. via axial or bending
action. However, the two systems have many shared properties such as being light-weight,
flexible, undergo large deformations when subjected to various loads and the fact that their shape
cannot be drawn beforehand as it is a result of the support conditions, geometrical connectivity
of members, loads and materials. Thus, the design of these structures necessitates a form-
finding step. These common characteristics suggest that they both fit into the same category of
“form-active” structures, which is what the title of this thesis refers to.

More recent structures also combine form-active and bending-active elements into one system
and are referred to as “hybrids”. The use of membranes to restrain bending active elements is
an example of such a system. This type of structure still has much potential that awaits to be

explored.



Figure 1.1.2 - The ICD/ITKE Research Pavilion 2010 made from thin, elastically bent plywood sheets

1.2 Analysis of form-active structures

Due to the flexibility of these structures, they are more difficult to analyse because most func-
tionality in finite element programs are based on the assumption of small displacements. Several
of the more advanced FEA packages have an option to perform a form-finding step though and
the stress state from this step can be stored as a load case and subsequently imposed in a non-
linear analysis. The finite element software SOFiSTiK (2016) is especially known for handling
structures with large deformations well. The two step process implies that there is an interde-
pendency between the form-finding and analysis, which forces the two steps to be performed
within the same software in order to transfer the necessary information. However, this gives the

architect little opportunity to be part of a design process.

The rigorous finite element environment generates very accurate and detailed results but at the
cost of being very time consuming to set up a model. As a consequence, it is only feasible to
analyse and refine one or two options whereas it would be more beneficial in the conceptual
design stage to explore a variety of shapes with less details but enough to make informed design

decisions.



1.3 Parametric and performance based design

During the last ten years parametric modelling software has become very popular in both archi-
tecture and engineering. The parametric approach makes repetitive tasks easier and provides a
flexible environment to investigate the influence of the different parameters that define the design
space without having to model everything from scratch. Especially the 3D modelling software
Rhinoceros (McNeel, 2016b) with its parametric modelling plug-in Grasshopper (McNeel, 2016a)
has gained much popularity in this context. A combination of a very active community, that
has encouraged the continuous development of additional Grasshopper plug-ins, and the ever
increasing requirements to energy and material efficiency in the building industry, has pushed
a performance based design approach forwards. This approach aims to establish a live feedback
loop between the geometry and certain aspects of its performance such that any changes to the
shape can be directly evaluated and used to make informed design decisions. This is achieved
by the integration of analysis software in the Grasshopper environment to avoid data exchange

issues and increase the speed.

From a structural perspective, the two most interesting plug-ins are the finite element software
Karamba3D (2016) and the physics engine Kangaroo (Piker, 2016b). The latter has many
different applications, one of them being structural form-finding. This allows both architects
and engineers to explore a variety of shapes emerging from different boundary conditions in
a very playful environment. However, once a desirable shape is found, the geometry has to
be regenerated inside a finite element program in order to transfer the information about the
stress state to the analysis. So whilst this approach helps to engage the architect in the design
process of form-active structures, the workflow is still interrupted once a satisfactory result
from an architectural perspective has been obtained, which eventually means that the structural

behaviour of only one or two options are analysed.

1.4 Aim

The aim of this research is to improve the current workflow related to the design and analysis

of form-active structures within the Rhino/Grasshopper environment.

For this purpose, a tool has been developed, which encourages an exploration of form-active
structures in this more spontaneous modelling environment and balances interactive speed with
a level of analysis detail that is sufficient to make informed design decisions in the conceptual
stage. Hence, this tool does not try to replace existing finite element software but is rather
targeted to help the development of a more intuitive understanding of the form-active structures

and explore a variety of design options before one is selected for detailed design.



1.5 Thesis structure

Chapter 2: reviews three recent projects in order to identify current design approaches and

their limitations and thereby specify this research path.

Chapter 3: describes the software framework, which the developments in this research build

upon.

Chapter 4: outlines relevant theory and its implementation along with small examples to

validate the behaviour and create a progress history.

Chapter 5: demonstrates the integration of the developed tool in a modelling pipeline for a

Smart Geometry workshop.

Chapter 6: contains a gridshell case study, which shows the applicability and advantages of
the developed design tool.

Chapter 7: concludes this thesis with a summary of what this research has delivered and

discusses the limitations, future work and design potential in practice.



Chapter 1: Introduction



Chapter 2

Literature & software review

The purpose of this chapter is to provide an overview of three recent projects in order to
highlight current design challenges and thereby more specifically identify the direction of this
research. The three projects are all related to form-active structures and the design and analysis
methods revolve around the Rhino/Grasshopper environment. Relevant aspects of the projects
are described and accompanied with small studies using similar software to better understand

the concepts and their limitations.

2.1 The OnGreening Pavilion

Figure 2.1.1 — The OnGreening Pavilion



The OnGreening Pavilion was a timber gridshell designed in a collaboration between OnGreening
Ltd and Ramboll Computational Design and erected at Ecobuild 2014 in London. The pavilion
had to fit within a footprint of 10 x 8 m and used for an indoor public exhibition on sustainable
buildings (Harding et al., 2014).

2.1.1 Shape generation

Figure 2.1.2 - OnGreening form-finding process (Harding et al., 2014)

The overall concept for the pavilion was decided to be a bending-active timber gridshell. Due to
the size restrictions, a funnel scheme was adopted to maximise the usable volume. The gridshell
was realised through a sequential assembly process, where each lath was bent individually rather
than the more commonly used approach of predefining a flat grid topology and pushing it into
shape. This assembly method was more appropriate for a funnel scheme and also allowed a

larger design space to be explored in order to meet client requests.

The spatial shape of the pavilion emerged through a simulation of elastica curves in radial
directions from the funnel centre as shown in Figure 2.1.2. The elastica curves had both axial
and bending stiffness and thus represented the behaviour of the straight timber laths that were
bent into shape. The Grasshopper plug-in Kangaroo was used for this form-finding process. In

total 32 curves were generated this way and formed the primary structural system.

A closed lofted surface was subsequently created through these curves and used to define the
secondary structural layer. Since it was intended to build the gridshell from straight timber
laths with a rectangular cross section, it was beneficial to let the secondary structure follow
geodesic lines on the surface as these unrolled to straight lines in the plane. The geodesics also
had the advantage of avoiding bending about the strong axis of the cross section (not considering
any loads), which could potentially be hard to achieve. For the same reason, it was decided to
change the primary structure to geodesics as well with the same start and end points as the

initial elastica curves. This meant that the curves were not initially in their spatial equilibrium

8



position but it was assumed that they still approximated the shape of the bent laths and that
the secondary layer of random geodesics furthermore braced the structure and held it all in place
(Harding et al., 2014).

2.1.2 Structural analysis

The finite element Grasshopper plug-in Karamba was used for the structural analysis of the
pavilion in an integrated workflow such that the influence of the density and location of the
random geodesics were evaluated immediately. The modelling of this layer needed manual ad-
justment to avoid cluttering in certain areas so rather than searching for an optimal solution,
the workflow allowed many different variations to be explored in a short time guided by human
intuition. The random nature of the secondary structural layer had the advantage of making
the gridshell less directional and thereby function more like a monocoque structure. The grid-
shell was analysed under the influence of self-weight and accidental point loads. Following the
principle of superposition, the stresses in the members resulting from the applied loads were

added to the stresses arising from the initial curvature of the laths.

2.1.3 Modelling and analysis of elastica curves with Karamba

The purpose of this small study is to investigate the outlined procedure and thereby gain a
better understanding of the design decisions that were made for the OnGreening Pavilion. It
is attempted to perform both the modelling and analysis of an elastica curve with Karamba to

use the same software throughout the study.

MODELLING

Karamba’s large deformation analysis is used for the shape generation of an elastica curve. In
order to evaluate whether the generated shape is in fact an elastica curve, a study carried out
by Adriaenssens and Barnes (1999) is used as benchmark. This study uses a dynamic relaxation
approach to generate elastica curves from four different axial loads (above the critical Euler
load) and compares the width and height ratios with an analytical solution as well. The set-up,
material properties and results from this study are shown in Figure 2.1.3, Table 2.1.1 and Figure

2.1.4 respectively.

’ Diameter [mm] ‘ Area [mm2] ‘ Moment of inertia [mm4] ‘ Young’'s modulus [MPa] ‘
] 126.5 | 1257-10° | 12.57 - 10° | 7958 \

Table 2.1.1 — Derived material properties from the benchmark elastica study assuming a solid circular cross
section

A similar set-up within the Karamba framework is attempted to be defined. The first approach
applies a pinned support in one end of the straight beam, a moveable support in the other end,
a horizontal load at the location of the moveable support of magnitude 2F and a small vertical

force at the middle to cause out-of-plane buckling. Whilst this set-up generates elastica like

9
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Figure 2.1.3 — Elastica form-finding set-up. A small vertical force at the middle is necessary to make the rod
buckle out-of-plane

Buckled states 1 2 3 4

Load 10.48 kN 12.67 kN 18.46 kN 39.48 kN

Central node x/L /L x/L V/IL x/L VL x/L VIL
Analytical 0.4405 0.2110 0.2800 0.3595 0.0615 0.4015 —0.1700 0.3125
Numerical

64 segments 0.4413 0.2099 0.2848 0.3572 0.0614 0.4019 —0.1699 0.3130

Figure 2.1.4 — Results from elastica curve study by Adriaenssens and Barnes (1999)

curves from a large deformation analysis, the results are heavily dependent on the magnitude
of the small vertical force and the method is therefore not ideal. Instead, the set-up is changed
to use prescribed displacements of two pinned supports according to the x/L ratios from the
benchmark study (referring to Figure 2.1.4) and a small vertical force at the middle (0.1 kN).
This set-up is less sensitive to the magnitude of the vertical force and produces the shapes as

shown in Figure 2.1.5.

The deviations of the y/L ratio in comparison to the benchmark study are listed in Table 2.1.2
for the four buckled states. It is seen that shape 1-3 closely approximate the benchmark results
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Figure 2.1.5 — Elastica curves generated by Karamba for the four buckled states. The measurements are given
in meters

] Buckled state ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘
| y/L deviation [%] | -0.8 [ 0.3 | -2.1 [ -15.6 |

Table 2.1.2 — Deviation of the y/L ratio between the Karamba results and the benchmark study

whereas shape 4 deviates significantly. The generated shapes from Karamba’s large deformation
analysis can therefore only be trusted within a certain range. Furthermore, it is not possible
to access any information about the forces and moments that arise from the movement. The
Karamba development team recognises this drift of the calculated deformed shape from the real
behaviour of the structure and has actively decided not to include any force output because of

the additional inaccuracy (Preisinger, 2012).

ANALYSIS

The initial prestress from the bending of the rods are calculated in a similar way as described
for the OnGreening Pavilion. This calculation uses the relationship between the moment and
curvature radius given as M = % and is integrated in a workflow that uses native Grasshopper
components to extract the curvature radius along the curve. Figure 2.1.6 shows the result of
such calculation for the four generated elastica curves. The maximum bending moment at the

top varies between 22 and 108 kNm.

The shape from the second buckled state with only 0.3% deviation from the benchmark study
is used to demonstrate the described principle of superposition to calculate the final stress state
when loads are applied. In this case, a vertical point load at the middle of magnitude 10 kN
is added and the resulting bending moments from a Karamba analysis are visualised in Figure
2.1.7 (middle). These moments are added to the previously calculated moments from curvature

to determine the final moment distribution as shown in Figure 2.1.7 (bottom). It is important
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Figure 2.1.6 — Bending moments from curvature for the four buckled states. The measurements are given in
kNm. Note that the results are symmetric about a vertical axis but are plotted at slightly different locations
along the beam.

to be aware of the sign variation when the moments are added together e.g. the moment from
curvature at the top works in the opposite direction of the moment from the applied load, which
reduces the final moment value. As a result, the maximum bending moments from superposition
are shifted a bit to the left/right side of the middle with a maximum value of 41 kNm. The

maximum deflection at the top is 42 mm but is calculated from the applied load only.

12



41

38
34
29
24
18
1
¢

—44.43

3
29
o
18
12

Figure 2.1.7 — Superposition of bending moments (bottom) for elastica curve resulting from initial curvature
(top) and point load (middle). The measurements are given in kNm

13



2.1.4 Remarks

In general, the OnGreening Pavilion highlights several of the common issues related to the
design of gridshells made from bending-active laths. It shows how the grid design is highly
related to the intended construction method and in this case a sequential assembly strategy was
adopted due to the funnel scheme and the choice of using geodesics (to avoid problems related

to anisotropic cross section properties).

The OnGreening project used the Grasshopper plug-in Kangaroo for the form-finding of elastica
curves. This seems like the better choice as the test of using Karamba’s large deformation
analysis for this purpose demonstrates that the solution drifts away from the real structural
behaviour when the displacements become large. This behaviour is not surprising as Karamba
is based on implicit methods, which assume small displacements to begin with. When the
displacements are large, which is the case for bending-active structures, it is favourable to use

explicit methods and this is exactly what the plug-in Kangaroo is based on.

Neither Kangaroo nor Karamba are capable of outputting any information about the forces from
the form-finding process. In light of this limitation, it seems reasonable to use the principle of
superposition to take the pre-stress from initial curvature into account. However, when the load
case becomes more advanced than a simple point load, it will most likely be difficult to keep
track of the signs of the moments and hence calculate the correct moment distribution. It is
on the safe side though, if the moments are always added together as absolute values (as it was

done for the OnGreening Pavilion).

Whilst the prestress effect is taken into account by this method in relation to the moment
distribution, it is not reflected in the displacement calculation and this may become a problem

if this is the most critical design parameter.

2.2 Atmeture

Figure 2.2.1 — Atmeture, Letchworth 2014 Loop.pH (2014)
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Atmeture was one out of several so-called “ArchiLace” projects designed by Loop.pH (2014).
It was built for the “Fire & Fright Festival” in Letchworth in 2014 and had the shape of a
4.3 m tall by 5.5 m wide tunnel. The structure was built from a number of interconnected
glass fibre reinforced polymer (GFRP) hoops, which were reinforced in certain locations by bent
carbon fibre rods following the hoop pattern. The stability of the structure was ensured by the
interlocking of the hoops and the structural analysis of this challenging structure was carried
out by Ramboll Computational Design.

2.2.1 Shape generation

The hoop pattern was generated from a number of mesh operations as shown in Figure 2.2.2.
From top left to bottom right these included the creation of a triangulated mesh from a three
dimensional surface, the dual hexagonal mesh, truncation to create more circular hoops which
only intersected at the midpoints of the hexagonal edges and eventually incorporation of the
carbon fibre lace (Melville and Nielsen, 2014). The modelling was performed within the Rhino/-
Grasshopper environment using the half-edge mesh library Plankton (Piker and Pearson, 2013).
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Figure 2.2.2 — ArchilLace shape generation (Melville and Nielsen, 2014)
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2.2.2 Structural analysis

Atmeture was a challenging structure to analyse for several reasons: the geometrical complexity,
the low stiffness of the GFRP rods resulting in large deformations and the fact that there were
no fixings between the hoops causing slippage before the structure interlocked itself. Therefore
different physical tests were carried out to observe the structural behaviour and compare that
to the results obtained from a finite element analysis in order to evaluate the accuracy of the
digital model (Melville and Nielsen, 2014).

Due to the geometrical complexity and in order to investigate several different options with
regard to the shape and carbon fibre reinforcement pattern, it was chosen to use the finite
element software Karamba. In contrast to the OnGreening Pavilion, the prestress from initial
weaving of the carbon fibre rods was simulated by adding bending moments (as equivalent force
couples) according to the local curvature. In this case, the desired shape was already defined
and hence did not necessitate a form-finding step. It was decided to only model this prestress
behaviour for the carbon fibre reinforcement since the closed hoops of GFRP did not exert any
forces onto the surrounding structure (zero net force). The slippage effect was not modelled due

to the uncertainty of this behaviour.

The structure was tied to the ground by some ballast at the lower parts and subjected to self-
weight and wind load. The analysis revealed that local buckling was the critical failure mode
for this structure. Different shape variations were investigated and showed that a more squat
tunnel cross section was the most efficient. Karamba’s linear buckling analysis was used to inform
the placement of extra local carbon fibre reinforcement in addition to the initial reinforcement
pattern defined by the artist. With these improvements it was shown that the structure was
stable for wind speeds up to 13.9 m/s. Figure 2.2.3 shows the final model with reinforcement

patterns and supports.

Figure 2.2.3 — Atmeture reinforcement pattern (Melville and Nielsen, 2014)
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2.2.3 Modelling of prestress with Karamba

The purpose of the following study is replicate the described method of simulating the prestress
effect with Karamba. The same elastica curve (buckled state 2) from Subsection 2.1.3 is used as
basis for the testing. The relationship between the moment and curvature radius is used again
but this time the equivalent force couple is calculated and applied to the model as external
loads. Each force couple corresponds to the forces that are necessary to straighten out that part

of the curve.
DEFORMATION

This method is tested on the elastica curve in two cases; firstly with pinned supports in both
ends and secondly with one of the supports being released and the results are shown in Figure
2.2.4. For the first case, a second order analysis is used to determine the deformed shape and
the maximum deflection at the top is observed to be 12 mm. Ideally the shape would remain
unchanged from the prestress load since the elastica curve already represents an initially straight
rod that is bent into shape. The small deviation is most likely caused by the inaccuracy related
to the form-finding of the elastica curve with Karamba’s large deformation analysis (in this case

0.3%).

For the second case, Karamba’s large deformation analysis is used to determine the deformed
shape from the prestress load. It is observed that the rod almost straightens out completely
with a maximum deviation of 230 mm at the middle. The reason why it does not become
perfectly straight is because the prestress load is calculated from the initial configuration and
the magnitude is therefore constant throughout the analysis even though the curvature changes.
The direction is however continuously updated (option for the large deformation analysis), which
minimises the deviation. In most cases, the deformation from the initial configuration will be

much smaller and the method thus more appropriate.

‘M\”\

Figure 2.2.4 — Simulating prestress of an elastica curve with Karamba. a) Pinned elastica curve. b) Released
elastica curve. The measurements are given in meters

MOMENT DISTRIBUTION

For the first case with two pinned supports, it is possible to extract the moments from the second

order analysis. The moment distribution resulting from the prestress load with and without an
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additional point load of 10 kN at the middle is shown in Figure 2.2.5. The distribution from
prestress without a point load deviates significantly compared to the result from Figure 2.1.7
(top) and is clearly wrong in this case since the curvature is not zero at the locations where
the bending moments are zero. This behaviour is a result of the prestress being treated as an
external load rather than an internal state in the rod. The distribution from prestress with
an additional point load can be directly compared to the plot in Figure 2.1.7 (middle). It is
observed that the prestress load results in a small reduction in bending moments and reduces
the maximum deflection of the structure from 42 mm (see Subsection 2.1.3) to 33 mm at the
top. The moment distribution is however far from the final result obtained from superposition

(referring to Figure 2.1.7 (bottom)).

Figure 2.2.5 — Moment plot of a pinned elastica curve with a) prestress and b) prestress and point load using
Karamba. The measurements are given in kNm

2.2.4 Remarks

The finite element model was further advanced for this project, in an attempt to include the
prestress effect by calculating equivalent bending moment force couples, which were subsequently
applied to the structure as an external load. The structural analysis by Ramboll Computational
Design did not include any information about the forces in the structure, which suggests that
this aspect was less important. Since the strength of both GFRP and carbon fibre is relatively
high, the bending stresses in the structure would most likely not be the problem but for a
bending-active timber gridshell like the OnGreening Pavilion this aspect could not have been

ignored.

Instead, the analysis approach focused on the effect of prestress on the deformation behaviour.
Even though the deformation of the elastica curve from the applied prestress load seems to
comply with the expected behaviour (referring to Figure 2.2.4), it is questionable whether the
behaviour is correct when additional loads are applied. In this case, the prestress effect is
responsible for reducing the maximum deflection by 9 mm at the top but the reliability of this
behaviour is questioned by the incorrect moment distribution. In general, the modelling of
prestress as an external load is confusing as prestress is more intuitively associated with the

reaction of a bent rod rather then the action of a load.
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Chapter 2: Literature & software review

In an conversation with Mathias Gmachl, founder of Loop.pH, the author was informed that
there was a contradiction with regard to the placement of additional reinforcement between the
results from the finite element analysis and the intuition gained by the artist through years of
experiments with these materials. The final reinforcement pattern was therefore adapted on site
to find a compromise. The uncertainty related to the modelling of the prestress effect on the
overall deformation of the structure combined with the slippage issue may explain why that was
the case.

2.3 Hybrid Tower

Figure 2.3.1 — Interior of the hybrid Tower at CITA (Thomsen et al., 2015)

Hybrid Tower was part of the “Complex Modelling” research project, which was mainly a collab-
oration between CITA (Centre for IT and Architecture) and KET (Department for Structural
Design and Technology) together with other universities and companies involved with textile
design. The 6.9 m tall tower was built in 2015 in the courtyard of the Design Museum Denmark
and combined individually soft elements including bending-active GFRP rods, textile mem-
branes and steel wires into a stronger whole. The aim was to develop new modelling pipelines
with integrated material properties to explore the design space in between form-finding and the

more rigorous finite element analysis and link this to fabrication as well (Thomsen et al., 2015).
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2.3.1 Hybrid concept

The overall shape of the tower was defined by overlapping bending-active GFRP rods, which
were stacked on top of each other. The in-between areas were filled with a knitted textile
membrane made of polyester yarn, which had the purpose of bracing the rod system (similar to
the principle behind a tent structure). To better withstand the wind loads, a wheel system of
tension cables were added to the central axis of the tower thus increasing the lateral stiffness.
The cable system also pulled the membrane inwards, which had the benefit of increasing the
double curvature and introducing more prestress to the membrane to make it more efficient. The
hybrid behaviour was characterised by the interaction between these three different systems and
quantified by adding each system one by one and observing a big increase in stiffness with only

a little increase in mass. The system is shown in Figure 2.3.1.

2.3.2 Design analysis workflow

Figure 2.3.2 — Hybrid Tower modelling workflow (Thomsen et al., 2015)

A modelling workflow, which integrated both geometry, form-finding, analysis and fabrication
was developed to design the tower. The Rhino/Grasshopper environment was used in a combin-

ation with the physics constraint solver Kangaroo2 (Piker, 2015b). The workflow was divided
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into four steps as illustrated in Figure 2.3.2:

1. Modelling of the coarse geometry of the three structural systems; polylines representing
the bending-active GFRP rods, a mesh representing the membrane and lines representing
the cables.

2. Form-finding using Kangaroo2 to arrive at the more accurate tower geometry

3. Analysis and visualisation of the bending radii of the rod elements to evaluate if it was

possible to built the form-found shape

4. Unrolling the membrane to the plane in order to directly create knitting patterns and

evaluate maximum dimensions related to the fabrication equipment

This modelling workflow allowed multiple configurations to be explored and enabled a more

informed process to arrive at the final design.

2.3.3 Structural analysis

Whilst, the integrated bending radii evaluation helped to obtain a realistic idea about the utilisa-
tion of the rods, further and more detailed analysis using the finite element software SOFiSTiK
was necessary because the Kangaroo2 simulation did not mimic beam torsion and membrane
behaviour accurately. Due to the large amount of bending-active elements and their complex
spatial configuration, it was too slow to form-find the shape of these elements by the typical
method in finite elements analysis where the rod ends are pulled to their target positions by
means of a pre-tensioned cable. As a result, it was decided to use the form-found shape of the
rods from Kangaroo2 and superimpose the prestress from initial bending to the results obtained
from the finite element analysis. The shape of the membrane and cables were form-found with
SOFiSTiK by adding prestress to the cables. The tower was subjected to wind loads and the
stresses and deflections were evaluated without any feedback loop to the previously described

modelling workflow.

2.3.4 Improvements

The author has through a collaboration with Anders Holden Deleuran (CITA) and Gregory
Quinn (KET) gained further knowledge about the improvements since the tower project. The
modelling of the coarse geometry followed by the form-finding process has been integrated into
an even more smooth workflow between Rhino/Grasshopper and Kangaroo2. Furthermore, the
bending radii analysis has been extended to include the calculation of bending moments using
real material and cross section properties. In general, more experiments with real stiffness values
as input for existing Kangaroo2 components have been further explored to simulate accurate
structural behaviour and remarkable stability has been observed. However, biaxial bending and

torsion of beams and general shell behaviour have still not been resolved.
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2.3.5 Remarks

The Hybrid Tower demonstrates the usefulness of integrating structural and fabrication con-
straints into one modelling workflow. The unique about this project is that both form-finding,
bending radii evaluation and unrolling of the membrane are performed with the same plug-in
(Kangaroo2), which inherently deals with the large deformations related to this kind of form-
active structure. Common for the modelling workflow developed as part of the Hybrid Tower
project and the improvements afterwards is that native Kangaroo2 components are used with
real material properties as input to simulate accurate structural behaviour. The forces are then
back-calculated based on the updated particle positions. However, this is not a very efficient way
of doing it as it essentially calculates everything twice and also requires more attention towards
the data structure in order to map the calculated information back to the initial geometry. As
the Kangaroo2 plug-in is relatively new (released spring 2015) and the developments with regard
to structural properties are in an early stage, there is still plenty of opportunity to investigate
further improvements of this workflow and thereby avoid the necessity to rely upon a separate

structural analysis software package in the early stage of a design.

2.4 Research direction

This literature and software review highlights the challenges of designing and analysing form-
active structures due to the large deformations. The advantage of integrating design and analysis
in one modelling environment is that multiple configurations can be explored in a short time
and informed decisions can be made to enrich the design as a whole. For form-active structures,
this integration has the additional advantage of preserving information between the form-finding

and analysis stage, which is crucial due to the inherent dependency.

The OnGreening Pavilion and Atmeture project demonstrated that the integrated finite element
software Karamba had limited capabilities when trying to analyse these kind of structures. The
two projects tried to include the prestress effect from initial bending of the elements with a focus
on stresses and deflections respectively but neither of them succeeded in including the effect on
both.

Even though the Hybrid Tower project eventually had to interrupt the workflow by exporting
the model to a more advanced finite element software, it showed great potential in integrating

design and analysis in one environment with Kangaroo2.
To achieve the overall aim of improving the design and analysis workflow of form-active struc-
tures within the Rhino/Grasshopper environment, the following actions are identified:

e Development of a digital tool that extends the Kangaroo2 plug-in to accurately model

structural behaviour

e Validation of the structural response through comparisons with analytical solutions or

results from other finite element software
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e Focus on the visualisation of the analysis results to make the structural behaviour more

intuitive to understand

In order to make this research compatible with the given time frame, the author has decided to

focus on bending-active structures in particular.
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Chapter 3

Kangaroo?2

Kangaroo is a plug-in for Grasshopper developed by Daniel Piker in 2010, which simulates
physical behaviour at interactive speed using dynamic relaxation techniques (Piker, 2016b). It
has particularly proven useful for the form-finding of structures, which are built from flexible

materials and involve large deformations.

The first version of Kangaroo used a force-based method, which calculated the resultant force
on each particle in the system and used Newton’s 2. Law of motion to derive the acceleration,
velocity and lastly the new position of the particle within a specified time step. Viscous or
kinetic damping was used to reduce the oscillations of the particles and thereby arrive faster at
the static equilibrium solution (Williams et al., 2014). The author has previously implemented
dynamic relaxation from scratch in the Processing environment based on a similar force-based
approach (Brandt-Olsen, 2014).

The problem with this force-based method is its stability problems when the stiffness values
become high, which often results in an “explosion” of the geometry. This happens because the
force vector overshoots its target position by a large amount, which in turn results in an even
larger “reaction” in the opposite direction. The behaviour is directly related to the fact that
the magnitude of the force vector is dependent on both how far the particle is from its target
position and also how important this force is relative to other forces. The situation is illustrated
in Figure 3.0.1. Here the particle in the middle is attracted to each of the corner points and
the magnitude of the force vector is proportional to the distance between the particle and the
attractor point. The figure to the left shows the position of the particle if no additional weighting
is introduced and the figure to the right shows the position when the weighting of one of the
force vectors is doubled. It is clear that as the weighting increases, the new position of the
particle passes beyond the target point (attractor point with highest weighting).

To limit this unstable behaviour, the time step can be reduced or higher-order integration
schemes such as Runge-Kutta (Weinsstein, 2016) can be used but both at the cost of computa-

tional speed.
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Figure 3.0.1 — Force-based approach. It is clear how the scaling of one force vector (to increase its relative
importance) easily makes the particle overshoot its target position

Up until now, Kangaroo has therefore mainly been used for form-finding purposes with arbitrary
stiffness values to speed up the process and avoid stability problems. This has led to a general
misunderstanding that Kangaroo is a particle-spring system, which only simulates plausible
physical behaviour. This is however not the case: Kangaroo is perfectly capable of producing

accurate and meaningful structural results given the correct stiffness values.

In 2014, Daniel Piker presented a complete re-write of the solver, which specifically aimed to
solve this stability issue and allowed users to script their own physical behaviours through an
API. This new version is also known as Kangaroo2 and has been inspired by position-based
dynamics (Piker, 2015c¢).

Rather than trying to reinvent the wheel, this platform is used as the basis for the software
development as part of this thesis. At the time of writing, Kangaroo2 is a 3 DOF system
meaning that it operates on 3d points rather than solids (6 DOF system). However, this is not

considered to be a limitation for the scope of this project.

3.1 Goals

They key concept behind Kangaroo2 is that every constraint is expressed as a goal. A goal
is a function (set of rules) that specifies where a subset of the particles want to move to and
how strongly they want to get there. This general definition makes it possible to combine
both geometrical constraints and structural behaviour into one system, which is a quite unique
property. In contrast to the force-based method, a goal is separated into a so-called move vector
and a weighting. The move vector specifies the relative movement from the particle’s current
position to its target position and the weighting indicates the strength of that movement. The
different goals acting on each particle are subsequently combined in a weighted-average manner
(Piker, 2015¢) such that the new position is calculated from
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Here i refers to the particle index, n is the number of goals acting on that particle, w is the

weighting and G is the move vector for goal j.

This ensures that overshooting never occurs since the new position always lies in the convex
hull of the target positions. If the weighting of one goal is set to an infinite large number, the
particle will move to the exact position of the target point, which is the desired behaviour. This
is illustrated in Figure 3.1.1, which can be directly compared to the behaviour shown in Figure
3.0.1.

w: 1to 10.000

Convex hull

8

Figure 3.1.1 — Position-based approach. If the weighting of one goal becomes infinitely big, the particle will
move to the exact target point rather than overshooting it.

3.1.1 Scripting custom goals

In April 2016, Daniel Piker made all the existing goals in Kangaroo2 open source (Piker, 2016a),
which is a huge learning resource and thus encourages the development of new custom goals.
The general code structure of such goal is shown in Listing 3.1. The idea is to create a new
class (in this case MyCustornGoal), which inherits its properties and methods from another class
called GoalObject. The constructor has to include some geometry, which can be referenced from
Rhino/Grasshopper (the objects related to the goal). It is important to define the goal for the

minimum subset of geometrical objects as the rest will be combined by the solver.

The properties in the constructor include three arrays: PPos, Move and Weighting. PPos
contains an array of points that the goal acts on (derived from the geometry input) and the

length of this array determines the length of the two other arrays. Move is an array of vectors
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Listing 3.1 — K2 custom goal structure
public class MyCustomGoal : GoalObject
public MyCustomGoal(Point3d P, double k)
PPos = new Point3d[1]{P};
Move = new Vector3d[1];
Weighting = new double[1]{k};
}
public override void Calculate(List<KangarooSolver.Particle> p)

{

Point3d ThisPt = p[Plndex[0]]. Position;

Move[0] = XX;

public override object Output(List<KangarooSolver.Particle> p)

{
var Data = new object[1]{Move[0] * Weighting [0]};
return Data;

(one for each point) and is often only initialised in the constructor, as it is unknown at this
stage where the points want to move to. Weighting is an array of numbers that describes how
strongly the goal affects each point. These values are often well-defined at this stage and can

therefore already be assigned to the array in the constructor.

The custom goal class contains two methods my default: Calculate() and Output(). Inheriting
these methods ensures that the goals are consistently defined and is compatible with the solver
but they have to be overwritten as they are uniquely defined for each goal. It is mandatory to
overwrite the Calculate method whereas the Output method is optional. Both methods take
a list of particles as input (happens automatically behind the scenes) and this part makes it
possible to calculate the move vectors based on the particles current positions as the solver
iterates. The first line of code in the Calculate method shows how to access the current position
of the first particle that was assigned to the PPos array (index 0). The behaviour of a goal is
often related to its rest/initial state and it is therefore necessary to store this information as
global class variables in order to access it in the Calculate method. Eventually, it is possible to

assign vector(s) to the Move array.

The Output method makes it possible to output some data related to each goal. Most of the
existing goals in Kangaroo2 do not have any outputs but there are a few exceptions including the
“Length(Line)” and the “Planarize” goal, which output the line geometry and the twist amount
of a mesh face. This data can be retrieved from the output of the solver component. The return
value of this method is of type object and this ensures that a number of different types e.g.
Point3d, Vector3d and double can be stored in one array but necessitates casting of the results

afterwards. This Output method is crucial for the software development as part of this thesis.
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3.1.2 Example: perpendicularity constraint

This example demonstrates the principles outlined in Subsection 3.1.1. The aim is to script
a custom goal, which tries to make two line segments perpendicular to each other in 2D. The
geometrical behaviour of such goal is sketched in Figure 3.1.2. The idea is that the first line
(Ln4) remains unchanged while the second line (Lng) rotates with a certain amount. The
rotation is invoked by two equal and opposite move vectors. The magnitude can be determined

from simple vector calculus:

1. Determine the perpendicular direction to the first line segment (Lna perp) by taking the

cross product of the first line vector (Lna) and a unit Z vector

2. Project the second line vector (Lng) onto the perpendicular direction via the vector dot

product

3. Scale the perpendicular vector (Ln 4 perp) according to this projection and subtract the
second line vector (Lng) from it in order to find the desired movement (d) in one end of

the second line

4. Divide this movement by two and apply an equal and opposite move vector (rot) to the
other end of the second line (Lnpg)

rot

2D

Aperp

Lny

rot=d/2

Figure 3.1.2 — Perpendicular goal behaviour

The described method is translated into a new custom Kangaroo2 goal as shown in Listing 3.2.
The goal requires two lines and a strength input and outputs the current angle between the two

lines during the iteration process.
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Listing 3.2 — K2 custom perpendicularity goal
public class perpGoal : GoalObject

double angle;
public perpGoal(Line InA, Line InB, double strength)

PPos new Point3d[4]{InA.From, InA.To, InB.From, InB.To};
Move = new Vector3d [4];

Weighting = new double[4]{strength , strength , strength, strength};

}

public override void Calculate(List<KangarooSolver.Particle> p)

//Current position of particles

Point3d InA_Start = p[PIndex[0]]. Position;
Point3d InA_End = p[PlIndex[1]]. Position;
Point3d InB_ Start = p[PlIndex[2]]. Position;
Point3d InB_End = p[PlIndex[3]]. Position;

//Lines as vectors
Vector3d vecA = InA_End — InA_Start;
Vector3d vecB = InB_End — InB_Start;

//Current angle between lines (degrees)
angle = Vector3d.VectorAngle(vecA, vecB) * (180.0 / Math.Pl);

//Create perpendicular vector to lineA
Vector3d perpA = Vector3d.CrossProduct(vecA, new Vector3d(O0,
perpA . Unitize ();

//Calculate projection of lineB onto perpendicular direction
double proj = Vector3d.Multiply(vecB, perpA);
Vector3d perpA scale = proj * perpA;

//Calculate rotation vector
Vector3d rot = perpA_scale — vecB;
rot /= 2.0;

//Define move vectors

Move[0] = new Vector3d(0, 0, 0);
Move[1l] = new Vector3d(0, 0, 0);
Move[2] = —rot;
Move[3] = rot;

public override object Output(List<KangarooSolver.Particle> p)

var Data = new object[1]{angle};
return Data;

30

0, 1));

to lineA



The custom goal is tested in a simple set-up as shown in Figure 3.1.3. The two grey lines are
given as input to the perpendicular goal and a strength value is specified. The move vectors from
the goal are visualised and the blue line is the result from the simulation. The angle between

the two line segments is output from the solver and is exactly 90 degrees.

Perp Goal

coooo

Figure 3.1.3 — Result from perpendicular goal

The goal is useful e.g in the context of Thrust Network Analysis. The principle behind this
form-finding method is to generate two reciprocal graphs: a form and a force diagram. The
form diagram represents the projection of mesh (shell) to the XY plane and the topology of the
force diagram can be created from the dual graph of the form diagram. The form diagram only
represents a shell in pure compression if the dual graph fulfils a perpendicularity constraint such
that the forces only act along the lines in the form diagram. The polygons in the force diagram
then describe the horizontal equilibrium in each vertex. The scale of the force diagram can be
chosen arbitrarily. The reader is referred to Block (2009) for further details of this form-finding
technique. Figure 3.1.4 (left) shows a form diagram (black) and its dual graph (blue). It is clear
that the corresponding edges are not perpendicular to each other. The custom perpendicular
goal is defined for all edge pairs and a “Length” goal for each line in the dual graph is added
to ensure that the lines do not shrink to an infinitesimal size during the iteration process. The
move vectors from the goals are visualised and highlight how multiple conflicting goals can exist
in each point. Figure 3.1.4 (right) shows the result from the simulation and the current angles
between the edge pairs. It is observed that the angles are only close to 90 degrees, which means
that it is not possible to satisfy all goals simultaneously in this case. However, it demonstrates
how the solver automatically combines the goals and finds a solution that is as close as possible

to the desired behaviour (see Subsection 3.3).
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Figure 3.1.4 — Perpendicular goal for Thrust Network Analysis. Left: Form diagram (black) and its dual graph
(blue). Right: Form diagram (black) and its force diagram (blue). In this case it is not possible to find a dual
graph, which fulfils the perpendicularity constraint entirely.

3.2 Workflow

The workflow in Grasshopper is usually characterised by a directed acyclic graph (DAG). This
means that if the input and output values are visualised as vertices and the functions (compon-
ents) as edges then the connectivity forms a graph where no directed path loops back to itself
(Wikipedia, 2016). In other words, input becomes output which becomes input again etc. such
that a Grasshopper definition is defined from left to right.

Kangaroo2 breaks this work flow by sending data back and forth between the goals and the solver
as shown in Figure 3.2.1 and this is an important observation to understand how to customise
goals. When scripting a custom goal, this feature enables the definition of a certain behaviour
based on information of the new positions of the particles even though this is only calculated in
the solver component afterwards. In a normal DAG workflow, this information would therefore
not be accessible at this point in the model history. Sending data back and forth between the

goals and the solver automatically happens behind the scenes but it is an important detail to
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Figure 3.2.1 — Kangaroo2 workflow. In this case showing a simple example of a Steiner Tree using the Constant
Tension goal

be aware of when customising Kangaroo2. A hint to this workflow is also noticeable from the
code structure as it uses List<KangarooSolver.Particle> p as the argument for the Calculate
and Output methods.

3.3 Solver

The solver is responsible for combining all the different types of goals and calculating the new
positions of the particles according to Equation 3.1.1. These updated positions are passed
back to the goals, which in turn calculate the new move vectors that are combined into new
positions. This iterative process is repeated and by doing so the total squared error of the
distances between the particles current positions and their target positions is minimised (Piker,
2015c¢). This minimisation is directly related to the energy of the system and this relation makes
it possible to simulate accurate structural behaviour given the appropriate stiffness values as the
displacements of a structure always follow the path that minimises the total potential energy.
The convergence towards a static equilibrium solution is similarly related to the energy of the
system and is detected when the total kinetic energy is smaller than a certain small threshold
value (default is 1-10719).

By default, three different solver types are available in the Kangaroo2 plug-in: the standard
solver with continuous output, which iterates until the system converges or the user disables
it. A “Zombie Solver”, which only outputs the final result when the system converges or a
specified number of iterations is reached. Lastly a “Bouncy Solver”, which preserves momentum
during the simulation and thus better reflects real world physical behaviour but at the cost of
computational speed. However, it is also possible to script custom solvers via the API, which
is useful to realise certain work flows, extract other information from the system, which is not

output as default values from the existing solver components or for debugging of custom goals.

Listing 3.3 shows the general code structure for scripting custom solvers. In this case, a
Kangaroo2 system is initialised together with some general properties including the tolerance
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Listing 3.3 — K2 solver custom iteration

KangarooSolver.PhysicalSystem PS = new KangarooSolver.PhysicalSystem ();
List<lGoal> GoallList = new List<IGoal >();

double tolerance
double threshold
int counter = 0;

0.001;
le—15;

foreach(1Goal G in k2Goals)

PS. AssignPlIndex (G, tolerance);
GoallList.Add(G);

PS.Step(GoalList, false, threshold);
counter—++;
} while(PS.GetvSum () > threshold && counter < 100);

(two particles are combined into one if the distance between them is smaller than this value),
threshold (kinetic energy value which specifies when the system has converged) and a counter
(to avoid an infinite loop if the system never reaches a kinetic energy value lower than the
threshold). The next step is to create a new list of goals from the predefined goals (k2Goals),
with the difference that each individual goal becomes aware of the particle indexes it acts on
in relation to the entire Kangaroo2 system. A Step function is responsible for breaking the
entire iteration process down into smaller parts (it can be compared to the time-step in the
force-based approach) such that it iterates until either reaching 15 ms or the kinetic energy
threshold. The do...while loop ensures that these smaller iteration steps continues until either

reaching the kinetic energy threshold or a maximum number of counts.

3.4 Convergence speed

The procedure of using the weighted average to calculate the updated positions only converges
slowly since the move vectors become smaller and smaller in each step as the system approaches
equilibrium. The particles are therefore assigned with masses to give them inertia and thus
carry them faster towards their target positions. In that regard, it becomes crucial to introduce
damping to the system to avoid that the particles overshoot their equilibrium positions. A
new damping scheme has been implemented in Kangaroo2, which differs from both viscous and

kinetic damping.

The damping scheme is based on the projection of each particle’s acceleration vector onto the
velocity vector (during each iteration) to determine if they point in the same direction. If the
projection value is positive, the acceleration and velocity vectors point in the same direction,
which indicate that the particle is moving towards its target position and hence no damping is
applied. If the projection value is zero or negative, the acceleration and velocity vectors point
in the opposite (or perpendicular) direction, which indicate that the particle has moved beyond
its target position and hence a strong damping factor is applied. The advantage of this damping

scheme is that it avoids the velocity discontinuity from kinetic damping and is applied on an
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individual basis such that only the movement of specific particles are slowed down rather than
the entire system (Piker, 2015c).

The functionality of the Kangaroo2 solver has not been released as open source, which means
that there are a few steps in the methodology that is still unclear to the author. For example, it
is unknown how the damping is introduced. In a force based approach, the damping is applied
to the velocity vectors, which are then used to calculate the updated positions. This is a natural
workflow as the particle positions are calculated at the end. In the position based approach, the
updated positions are directly calculated from the weighted average (see Equation 3.1.1), which
means that the velocity and acceleration vectors become irrelevant. But since the damping
scheme in Kangaroo?2 is based on the velocity and acceleration vectors, these must be calculated
somehow (unknown which time step is used) and turned back into positions that are affected by
the damping. However, this lack of knowledge of the specific technical details is not a limitation

for using the software.
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Chapter 4
K2Engineering

This chapter describes the methods that have been implemented as part of the software devel-
opment and are all related to a 3 DOF system. Several simple test cases are used throughout
the process to validate the results and thereby gain confidence in the tool (see Appendix A).
The software is developed as a separate plug-in to Grasshopper and can be considered as an
extension to Kangaroo2 with calibrated structural values hence the name “K2Engineering”. The
author has decided to make this plug-in open source under the Apache 2.0 licence (OSI, 2004)
and has made all source code written in C# available on Github (Brandt-Olsen, 2016).

In addition to the new goals with calibrated structural behaviour, a big part of the development
has also included the visualisation of forces in relation to the three dimensional geometry. The
visualisations help to obtain an intuitive understanding of the structural behaviour and identify

load paths without inspecting the specific values.

It is important to clarify that in most cases it is possible to simulate the calibrated structural
behaviour using the native Kangaroo2 components. This is accomplished by inputting the
appropriate axial and bending stiffness to the strength inputs. The contribution of this research
is therefore mainly related to the output of meaningful structural values, which are not back-
calculated from the displacements in the end and thus avoid duplicate functionality. In addition,
this approach makes it more clear which properties are needed for the calibration and in general
has to be considered as the early stage of a larger potential centred around this Kangaroo2
framework. Notice that at the time of writing these custom goals, the native Kangaroo2 goals

had not yet been made open source.

4.1 Supports

In any building system it is necessary to have supports to prevent the structure from moving
around in space. With the current Kangaroo2 version it is only possible to control the trans-

lational degrees of freedom i.e. restrain the movement in the X, Y and Z directions. A pinned
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support implies that all three directions are fixed, whilst a roller support is able to move in
at least one direction. Even though it is a 3 DoF system, it is still possible to mimic a rigid
support by adding two consecutive pinned supports along a line, which has the effect of creating

a reaction force couple to fix the rotation.

A support can be considered as a point that is attached to a particle of infinite mass with a
zero length spring (Piker, 2015a). This means that Hooke’s Law can be used to calculate the

reaction force:

F=-k-x (4.1.1)

Here k specifies the stiffness of the spring (any arbitrary large number) and z is the extension,
which in this case corresponds to the movement of the point due to the applied loads on the

structure.

4.1.1 Implementation

This behaviour is implemented as a support goal by specifying the position of the support, the
strength of the spring and which directions are fixed (see Table 4.1.1).

| GH Component | Input | Output |
Position Position
X fixity Reaction force [kN]
Y fixity
Z fixity

Spring strength

Table 4.1.1 — Input and output from the support goal

The functionality is translated into code as shown in Listing 4.1 and briefly described in the

following:

Line 3-6: Four variables are declared as global class properties in order to make them accessible
in the Calculate method. They include the original support point (which will function as a
target when the point starts to move) and three boolean values specifying in which directions

(if any) the point is allowed to move.

Line 10-17: The four class properties are initialised based on the input to the component. The
goal only acts on one point, which means that only one value has to be specified for each of the
mandatory arrays. PPos contains the specified support point, the Move array is only instantiated
as it it unknown at this point where the particle wants to move to and the weighting corresponds

to the specified strength value.

Line 22-87: The current position of the particle during the simulation is stored as a variable. The

move vector is easily calculated since the extension for a zero-length spring exactly corresponds
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Listing 4.1 — K2Engineering support goal
public class SupportGoal : GoalObject
Point3d Target;
bool xFixed;

bool yFixed;
bool zFixed;

public SupportGoal(Point3d Pt, bool x, bool y, bool z, double k)

{
PPos = new Point3d[1] { Pt };
Move = new Vector3d[1];
Weighting = new double[1] { k };
Target = Pt;
xFixed = x;
yFixed = y;
zFixed = z;

}

public override void Calculate(List<KangarooSolver.Particle> p)
Point3d currentPt = p[PIndex[0]]. Position;
Vector3d moveTotal = Target — currentPt;
if (!xFixed)
moveTotal . X = 0.0;

3
if (!yFixed)

{ moveTotal .Y = 0.0;
::f (! zFixed)

{ moveTotal . Z = 0.0;
}

Move[0] = moveTotal;

}
public override object Output(List<KangarooSolver.Particle> p)
var Data = new object[2] { p[PIndex[0]]. Position, Move[O] * Weighting[0] * le—3
}.

return Data;

to the distance between the original (target) point and the current position. Due to the large
weighting, this means that the point is moved back to the target position in each iteration. If
the support is allowed to move in one direction, the move vector is manipulated such that the

component in the released direction equals zero.

Line 42: The current position of the support point and the reaction force (calculated by mul-

tiplying the move vector with the spring stiffness) are output from the goal.
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4.2 Bar

The simplest structural element is a bar, which only transfers forces through axial action. It is
assumed to be made of a linear elastic material, which implies that the strain is proportional to

stress (Hooke’s Law). This relationship can be rewritten as:

L-1L E-A
O o F=

- F- F=E-A-
g £ <= o Io

cx (4.2.1)

Where F' is the axial force [N], E is the Young’s modulus [MPa], A is the cross section area
[mm?], Lo is the rest length of the bar element [m], L is the current length [m] and x is the
extension [m|. The term EL—':‘ is also known as the axial stiffness. If the bar is stretched and
therefore in tension, it will try to contract to its initial rest length and as a result have reaction
forces pointing inwards from the ends. On the other hand, if the bar is shortened and therefore
in compression, it will try to stretch out to its initial rest length and thus exert outwards reaction

forces from the ends. The behaviour is illustrated in Figure 4.2.1.

: Initial Ef A ;
o - o

Lo

Tension

O > <€ O
L
X/2
Compression
o€ >0

L x/2

Figure 4.2.1 — Axial behaviour of a bar element

4.2.1 Implementation

To implement this as a Kangaroo2 goal, it is necessary to express the force F from Equation
4.2.1 as a “Move vector” and a “Weighting”. Since x is the total extension of the bar and the
move vector only describes the movement of one end point, it has to be halved and thus equal
5. To account for that, the axial stiffness has to be doubled such that the axial force F remains

the same. As a result, the weighting equals twice the axial stiffness.
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The smallest subset of geometrical objects to define a bar goal is one line segment. In addition
to that, it is necessary to specify the Young’s modulus and the cross section area in order to
calculate the axial forces (the rest length is derived from the line segment automatically). With
these inputs it is possible to script a bar goal with meaningful structural output (see Table
4.2.1).

| GH Component [ Input | Output |
Line [m] Particle index start
Young's modulus [MPa] | Particle index end
Area [mm2] Updated line geometry

Axial force [kN]
Axial stress [MPa]

Table 4.2.1 — The input and output from a bar goal

This functionality is translated into code as shown in Listing 4.2 and briefly described in the

following:

Line 8-5: Three variables are stored as global class properties in addition to the obligatory
PPos, Move and Weighting arrays. They include the rest length, the cross section area and a
boolean for whether the member is in compression or not. Thereby they can be accessed in the

Calculate method.

Line 13-15: The obligatory arrays are initialised. PPos contains the start and end point of the
line, Move is only instantiated as the move vectors are unknown at this point and the Weighting

is set to twice the axial stiffness as explained above.

Line 20-38: The current positions of the start and end point are stored and used to calculate the
length of the line in each step of the simulation. This is in turn used to calculate the extension by
subtracting the rest length from the current length. The sign of the extension implies whether
the member is in tension or compression, which is captured by the boolean class property. The
sign is also useful to consistently specify the directions of the move vectors such that they are

automatically reversed when the axial force shifts between tension and compression.

Line 43-51: The desired output is extracted and added to a Data array. The axial force is
calculated by multiplying the first item in the Weighting array with the first item in the Move
array as this corresponds to Equation 4.2.1. This is where the boolean class property becomes
useful as it helps to keep the sign of the axial force, which is otherwise lost by taking the length
of the Move vector. The axial stress is subsequently determined by dividing the force with the
cross section area. Furthermore, the particle index of the start and end point of the line and

the updated line geometry are output.
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Listing 4.2 — K2Engineering bar goal

public class BarGoal : GoalObject

{

double restLenght;

bool isCompressionMember;

double area;

public BarGoal(Line L, double E, double A)

restLenght = L.From.DistanceTo(L.To);

isCompressionMember = true;
area = A;
PPos new Point3d[2] { L.From, L.To };

Move new Vector3d[2];

Weighting = new double[2] { (2 = E * A) / restLenght,

}

public override void Calculate(List<KangarooSolver.Particle> p)

Point3d ptStart = p[PlIndex[0]]. Position;

Point3d ptEnd = p[PlIndex[1]]. Position;

Vector3d forceDir = new Vector3d(ptEnd — ptStart);
double currentLength = forceDir.Length;
forceDir.Unitize();

double extension = currentlLength — restLenght;

if (extension > 0.0)
{

isCompressionMember = false;

else if (extension < 0.0)

{
isCompressionMember = true;
3
Move[0] = forceDir % (extension /[ 2);
Move[l] = —forceDir x (extension / 2);

public override object Output(List<KangarooSolver.Particle> p)

double factor = 1.0;
if (isCompressionMember)

factor = —1.0;
by
double force = factor * Weighting[0] =

var Data = new object [5] { Plndex[0],

Move[O]. Length;

Pindex[1], new Line(p[PIndex[0]]. Position ,

p[PlIndex[1]]. Position), force / 1000.0, force / area

return Data;
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4.3 Cable

A cable is a special case of the bar element, which only works in tension and becomes slack in
compression. Furthermore, it has the option to be prestressed in order to reduce the deflections.
A prestressed cable is already in tension before the external loads are applied and the strength
of the prestress is typically specified as a tension force. Figure 4.2.1 shows that this tension
state implies that the cable wants to shrink back to its rest length and it can thus be simulated
by calculating a new rest length that is smaller than the initial length of the element. Rewriting

Equation 4.2.1 gives

_F-L
T E-A

x (4.3.1)

The rest length corresponding to a certain pretension force F' is therefore L,.st = Lo — .

4.3.1 Implementation

Due to the many similarities with the bar goal, only the differences with regard to the imple-
mentation are mentioned in the following. Table 4.3.1 shows the cable Grasshopper component

with one additional input parameter for the pretension value.

| GH Component | Input | Output |
Line [m] Particle index start
Young's modulus [MPa] | Particle index end
Area [mm2] Updated line geometry

Optional pretension [kN] | Axial force [kN]
Axial stress [MPa]

Table 4.3.1 — The input and output from a cable goal

The few changes in the code as shown in Listing 4.3 include:

Line 3-4: It is no longer necessary to store a boolean value for whether the element is in tension

or compression so this variable is removed.
Line 6: The pretension parameter F is added as an argument to the constructor method.

Line 15: A new rest length is calculated from Equation 4.3.1. The default pretension value is

zero, which means that the rest length equals the initial length if no pretension value is specified.

Line 29-35: The move vectors are set to zero by default and are only changed if the element
is in tension. This means that the cable does not exert any axial forces if it is in a neutral or

compression state.
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Listing 4.3 — K2Engineering cable goal

public class CableGoal : GoalObject

{

double restLenght;
double area;

public CableGoal(Line L, double

E, double A, double F)

restLenght = L.From.DistanceTo(L.To);
area = A;
PPos new Point3d[2] { L.From, L.To };

Move new Vector3d[2];

Weighting = new double[2] { (2 = E x A) / restLenght,

restLenght —= (F % 1000 * restLenght) / (E % A);

}

(2 = E x A) /

public override void Calculate(List<KangarooSolver.Particle> p)

Point3d ptStart = p[PlIndex[0]]. Position;
Point3d ptEnd = p[PlIndex[1]]. Position;

Vector3d forceDir = new Vector3d(ptEnd — ptStart);
double currentLength = forceDir.Length;

forceDir.Unitize ();

double extension = currentLength — restLenght;

Vector3d forceStart = new Vector3d (0, 0, 0);
Vector3d forceEnd = new Vector3d(0, 0, 0);

if (extension > 0.0)
{

forceStart = forceDir =x

(extension / 2);

forceEnd = —forceDir * (extension / 2);

}

Move[0]
Move [1]

forceStart;
forceEnd ;

public override object Output(List<KangarooSolver.Particle> p)

double force = Weighting[0]

var Data = new object[5] { Plndex[0],

p[PIndex[1]]. Position),
return Data;

* Move[0]. Length

force / 1000.0,
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The cable goal is an example of a functionality, which is more difficult to simulate with a
calibrated structural behaviour using the native Kangaroo2 goals. The new rest length can
be calculated based on a pretension force (see Equation 4.3.1) and provided as input for the
“Length(Line)” goal. However, if the length of the element during the simulation becomes smaller
than this rest length, it will still exert axial forces even though it is in compression. To avoid
this, one option is to set the rest length to zero such that any deformation will result in an
elongated element and therefore always be in tension but that removes the “materiality” from

the simulation and thus makes it more applicable as a form-finding goal.

4.4 Rod

A rod is an element, which resists the applied external load by bending action (out-of-plane
forces). Typically, six degrees of freedom are necessary to describe this behaviour as the bending
moments are related to the rotations. However, this is not possible in a 3 DoF system like
Kangaroo2 and hence a different method to mimic the same behaviour is desired. Such method
has been developed by Adriaenssens and Barnes (1999), which is based on the continuity of
spline elements i.e. it requires two consecutive line segments to model the bending behaviour in
one node as illustrated in Figure 4.4.1.

e

Figure 4.4.1 — Modelling of bending in a 3 DoF system

The method takes advantage of the relationship between the moment and curvature defined as

E-I
M=— 44.1
- (44.)

Where R is the curvature radius and E - I is the bending stiffness. Given two consecutive line
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segments, the radius of the circle passing through the end points is defined as

L./2 L.
/ & R

sinfa) = R T2 sin(a)

(4.4.2)

From that expression, the magnitude of the moment acting in the shared node is calculated.
This moment is then translated into an equivalent force couple acting perpendicular to each line

segment

M=S8, Lyo=2S,-L (4.4.3)

These forces correspond to the shear forces in each element. The directions of the shear forces
reflect how each element attempts to resist an applied load by rotation. By combining the

equations above, the magnitude of the shear forces S, and S, are calculated as

E-T 2.E.1-si
=Sy Ly o 5, = 2 E Lsinla) (4.4.4)
L. L La
2-sin(a)
S_2-E-I~sin(a) (4.4.5)
b Le- Ly -

4.4.1 Moments and shear forces

The method above describes how to calculate the bending moment and shear forces for two
consecutive line segments. This subset of the spline is sufficient to calculate the moment in
the shared vertex as shown in Figure 4.4.2 as the moment in one vertex is not affected by the

moments resulting from the neighbouring elements.

Figure 4.4.2 — Bending moments for a spline

However, this is not the case for the shear forces as illustrated in Figure 4.4.3. From three line
segments of a spline it is possible to create two subsets of consecutive lines. Figure 4.4.3 (top)
shows the shear forces for each subset according to the described theory. The curvature for
the subset to the left is smaller than the curvature for the subset to the right and hence the
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magnitude of the shear forces is smaller (as the lengths of the spline segments are constant).
These shear forces represent the distribution as shown in Figure 4.4.3 (middle). It is observed
that the line segment in the middle is influenced by two different shear values of opposite sign.
By adding the values together for each line segment, the final shear distribution of the spline is

obtained as seen from Figure 4.4.3 (bottom).

In other words, the shear value for each line segment is equal to the difference in moments at
its end points. This is not surprising as shear is defined as the rate of change of the bending
moments. However, it highlights an important point in this context; given two consecutive lines
it is only possible to calculate the moment. The shear calculation requires information from the

other rod goals as well.

Figure 4.4.3 — Shear forces for a spline

4.4.2 Actively bent or fabricated curved elements

With this definition it is possible via the angle parameter « to specify the rest configuration of
the spline i.e. whether it is unstressed in its initial spatial shape or as a straight line. If the

spline is initially straight then o = 180° — £ L,L; as shown in Figure 4.4.1, which means that
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there exists a moment from the beginning in the shared vertex based on the curvature of the
circle through the three points. On the other hand, if the spline geometry is in rest in its initial
configuration e.g. like a frame then o = £L, Ly, — £L, Ly where the subscript » symbolises
the angle from the rest state. This is equivalent to subtracting the moment from the deformed
configuration with the moment from the rest state as described by Adriaenssens and Barnes
(1999). As a result, the line segments seek to maintain the angle from the rest state rather than

straighten out completely.

This is a key feature to define prestress in bent elements made from initially straight/planar
materials and this way the prestress is modelled as an internal state in the element rather
than an external load as described for the Atmeture project in Chapter 2. Furthermore, this
means that the intended spatial shape can be defined beforehand and from there find the static
equilibrium configuration as if it was initially straight. This is a big advantage compared to the
methods used for large deformations in a finite element software where the path of the structure’s

deformation is of great importance for the final result.

4.4.3 Implementation

The smallest subset of geometrical objects to define a rod goal is two consecutive line segments.
Furthermore, it is necessary to specify the Young’s modulus, the moment of inertia, the distance
to the fibre where the stress is calculated and whether the elements want to straighten out or are
in rest in their current configuration. The goal outputs the particle index of the shared vertex,
the bending plane, the moment and bending stress. The developed Grasshopper component

with its input and output values are shown in Table 4.4.1.

| GH Component | Input | Output \

LineA [m] Shared particle index

s LineB [m] Bending plane

dine Young's modulus [MPa] | Moment [kNm]

JEE— Moment of inertia [nm?] | Bending stress [MPa]

S o™, Rod p Distance to fibre [mm]

I Rest angle option

d opt (0: straight, 1: current)

Table 4.4.1 — The input and output from a rod goal

To implement this functionality with Kangaroo2, the shear force from Equation 4.4.5 has to
be separated into a move vector and a weighting. The “geometrical” part of the expression is
defined as the move vector and the “material” part i.e. the bending stiffness is defined as the

weighting. The code as shown in Listing 4.4 is briefly explained in the following:

Line 3: Three variables including the moment of inertia, distance to the outer fibre and the rest

angle are defined as global class properties in addition to the mandatory arrays.

Line 7-9: The mandatory Kangaroo2 arrays are initialised and it has been decided that the rod

goal acts on four points (end points of both line segments) to make the code more transparent.
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This means that point two and three are identical but the Kangaroo2 solver will take care of

that when the physical system is created.

Line 13-18: The rest angle from the initial configuration is defined based on the two different

options.

Line 23-31: The current positions of the particles in each step of the iterations are stored and
used to define “edge vectors”. These vectors are useful to calculate the current angle between
the two line segments and thereby define the angle parameter o but also to obtain the normal

vector to the plan spanned by the two edge vectors via the cross product.

Line 33-45: The normal vector and edge vectors are subsequently used to calculate the per-
pendicular directions (shear vectors) to the line segments again via the cross product. The
magnitude of the shear vectors corresponds to the geometrical part of Equation 4.4.5. Eventu-
ally the move vectors are defined with special attention to the sign of the shear vectors.

Line 50: The dots symbolise the repetition of lines 23-29 + 31.

Line 51-60: The desired output is calculated, which include the shared particle index, the
moment, the bending plane and stress. The moment is calculated from the first item in the
move vector array multiplied with the first item in the weighting array and the length of the
first segment. The bending plane is defined from the normal vector and the average of both
move vectors acting in the shared vertex. Lastly, the stress is obtained from the knowledge of

the moment, moment of inertia and distance to the outer fibre.

Since it is not possible to output the shear forces directly from the rod goal, this functionality is
implemented in another Grasshopper component, which collects the necessary information from
the other goals after the solver. It takes a list of lines as input and identifies the corresponding
bending planes and moments at its end points. As the moments are absolute values due to the
calculation method, the orientations of the bending planes become essential to identify the signs

of the moments and thereby calculate the difference.

4.4.4 Beam element

Whilst the bar and cable goal function on their own, the rod goal always need to be accompanied
by the bar goal in order to avoid drifting of the nodes as there are otherwise no forces to maintain
the distances between them. Thus, a bar goal combined with a rod goal represent a beam
element. The reason why these are not combined into a beam goal (possibly with self-weight
included) is to be more transparent about the implemented methods and thereby clearly show
which input is necessary to define certain structural behaviours. The general understanding
of a beam element is related to one line segment only, whereas a beam element in this set-up
requires two consecutive lines and sorting along the splines. A beam element in this set-up

would therefore most likely be unintuitive and used in a wrong way.
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Listing 4.4 — K2Engineering rod goal. Simplified with help from Daniel Piker

public class RodGoal : GoalObject

double inertia , zDist, restAngle;

public RodGoal(Line LA,Line LB,double E,double

PPos = new Point3d[4] { LA.From,

Move = new Vector3d [4];

LA.To,

| ,double z,int opt)

LB.From, LB.To };

Weighting = new double[4]{Exl*le—6,Exlxle—6,Exl+le—6,Exlxle—6};

inertia = |;
zDist = z;

if (opt = 0){
restAngle = Math.Pl;

3
else if (opt = 1){

restAngle = Vector3d.VectorAngle(new Vector3d(PPos[0] — PPos[1]), new

Vector3d (PPos[3] — PPos[2]));

}

public override void Calculate(List<KangarooSolver.Particle> p)

Point3d PO = p[PlIndex]|

Point3d P2 = p[PlIndex|

Position ;

Position ;

o]].

Point3d P1 = p[Plndex[1]]. Position;
2]].
3]].

Point3d P3 = p[PlIndex|
Vector3d V01 = P1 — PO;
Vector3d V23 = P3 — P2;
Vector3d V03 = P3 — PO;

Position ;

double currentAngle = restAngle — Vector3d.VectorAngle(—V01l, V23);

Vector3d n = Vector3d.CrossProduct(—VO01,

V23);

Vector3d shearA = Vector3d.CrossProduct(—V01l, n);

Vector3d shearB
shearA . Unitize();
shearB. Unitize () ;

double shearAVal = (2.0 % Math.Sin(currentAngle)) / (VOl.Length % VO03.Length);
double shearBVal = (2.0 % Math.Sin(currentAngle)) / (V23.Length % VO03.Length);

shearA *x= shearAVal;
shearB *= shearBVal;

Move[0] = shearA;
Move[1] = —shearA;
Move[2] = shearB;
Move[3] = —shearB;

Vector3d.CrossProduct(V23, n);

public override object Output(List<KangarooSolver.Particle> p)

double moment = Move[0].Length * Weighting [0] * VOl.Length x 1le3;
double bendingStress = (moment * zDist) / inertia;
Vector3d planeYAxis = —(Move[1] + Move[2]) / 2.0;

Vector3d planeXAxis = Vector3d.CrossProduct(planeYAxis,

planeYAxis. Unitize();
planeXAxis. Unitize();
Plane pl = new Plane(P1,

planeXAxis

var Data = new Object[4]{PlIndex[1],

return Data;

, planeYAxis);

pl,

50

moment * le—6,

n);

bendingStress };



4.4.5 Example: Elastica

The developed rod goal is used to model elastica curves using the same set-up from Subsection
2.1.3 and the resulting shapes are similarly compared to the benchmark study by Adriaenssens
and Barnes (1999). In this case, it is possible to generate the shapes by applying forces to
the end points of the line instead of prescribing the displacement thus exactly replicating the
benchmark study. The four different buckled states as well as plots of the bending moments

and axial forces are shown in Figure 4.4.4.

3 0.63»J¢ 4 L 1.69 —»|

Figure 4.4.4 — Elastica curves generated by K2Engineering for the four buckled states. The measurements are
given in meters

Table 4.4.2 shows the deviation of the width/height ratios in comparison with the benchmark
study. It is seen that the results are mostly within 1% deviation for all four buckled states,
which emphasise a reliable implementation of the rod goal. The third buckled state deviates
slightly more in the horizontal direction (3%) but is still evaluated to be within an acceptable
range. Furthermore, the maximum axial forces and bending moments are directly extracted
from the analysis. The maximum compression force occurs at the top of each elastica curve and
is equal to the applied force at the end points. The maximum bending moment also occurs at

the top and increases in each state due to the more tight curvature.

Similar to the study in Subsection 2.1.3, the second buckled state is used as initial geometry,
pinned at both ends and subjected to a vertical point load of 10 kN at the middle. The behaviour
with and without prestress is shown in Figure 4.4.5. In the case where prestress is included, the
largest moment is reduced and shifted a bit to the right/left of the middle due to the applied
point load that contributes with a moment in the opposite direction at the top. The results are

very similar to the moment distribution calculated from superposition (referring to Figure 2.1.7
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]Buckledstate ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘

Force [kN] 10.48 | 12.67 | 18.46 | 39.48
x/L deviation [%] 0.3 0.3 2.8 -0.5
y/L deviation [%] | 09 | -01 | 002 | 01

N max [kN] -10.5 | -12.6 | -18.4 | -39.3
M max [kNm] 218 | 452 | 742 | 1237

Table 4.4.2 — Elastica curves obtained from K2Engineering. The deviation is measured with regard to the
benchmark study by Adriaenssens and Barnes (1999) as outlined in Chapter 2

(bottom)), which emphasise that this is an appropriate method to include the prestress effect
if a standard finite element software is used. In the case where prestress is not included, the
moment distribution and the maximum displacement are similarly consistent with the Karamba
results (referring to Figure 2.1.7 (middle)). The small deviation in both cases is due to the

shape difference from the two form-finding methods.

Whilst the principle of superposition is useful to take the prestress effect into account with
regard to the moment distribution, the influence on the deflection is ignored. In this example,
the prestress is responsible for increasing the maximum displacement of the structure (46 mm
compared to 42 mm at the top). This behaviour is opposite to the observations made from the
Karamba analysis where prestress was attempted to be modelled as an external load (referring to
Subsection 2.2.3). Here the prestress was responsible for decreasing the maximum displacement
to 33 mm (referring to Figure 2.2.5). The method used for the Atmeture project therefore seems

inadequate to mimic the effect of prestress on the deflections.

Maximum values

Maximum values

M: 41.6 kNm Blg  M:52kNm ole-
N:-16.1 kN N: -5.6 kN
Displ: 45.9 mm Displ: 41.5 mm

Figure 4.4.5 — Elastica behaviour with (left) and without (right) prestress and a point load of 10 kN applied at
the middle
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4.5 Goal limitations and further developments

4.5.1 Biaxial bending and torsion

The implementation of the rod goal is limited to circular cross sections and necessitates two
consecutive line segments in order to mimic bending in a 3 DoF system. The bending resistance
is defined within the plane of the two line segments. For a spatial rod element this results
in varying bending planes along the length. The moments are therefore an expression of the
“resulting moments” rather than the moments related to the two cross section axes. But since
it is assumed that the rod is made of a circular cross section with isotropic properties, this is
not a problem. However, it is important to notice that this definition does not take torsion into

account.

When rectangular cross sections are used, this bending definition is no longer sufficient because
it does not properly account for the anisotropic behaviour due to the lack of orientations in a
3 DoF system. In an attempt to address this shortcoming, Barnes et al. (2013) have extended
the method to account for biaxial bending and torsion. This definition only relies upon three
degrees of freedom but requires three consecutive line segments. The disadvantage of the method
is that it imposes a restriction on the curvature radius, which means that it cannot model straight

elements.

More advanced methods to model biaxial bending and torsion have been developed in the
computer industry to e.g simulate ropes and hair (Umetani et al., 2014) (Grinspun et al., 2008).
More recently this approach has made its way to the building industry for the form-finding
of elastic gridshells made from rectangular cross sections (Peloux et al., 2015). The different
variations are all based on a curve-angle representation to reduce the system from 6 DoF to 4
DoF and require the specification of the cross section orientation along the rod element either
by frames or so-called ghost points. The frame method is based on the concept of defining
a zero-twisting frame (also known as a Bishop frame) along the centreline of the rod, which
is calculated from the curvature normal and automatically adapts during the simulation. The
angle between this frame and the material frame is then used to calculate the bending about
both axes and the twist. The biaxial bending behaviour can be translated into forces in a similar
way as the simple rod goal but with move vectors acting in two planes. The torsion behaviour
is more difficult to translate into move vectors and the math behind this is very advanced and
hence outside the scope of this thesis. A biaxial bending and torsion goal is however evaluated to
be the most important improvement of this K2Engineering plug-in in the future. Alternatively,
it can be implemented according to the method described by Olsson (2012) when Kangaroo2 is
extended to a 6 DoF system.

4.5.2 Constant strain triangle

A natural next step is also to implement a constant strain triangle goal (CST), which can be used

to model membranes. Whilst the current cable goal can be used to approximate the behaviour,
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it is desirable to include the membrane specific behaviour, which includes shear stiffness and a
more direct interaction between the warp and weft direction of the material. Both form-finding
and analysis methods are described by Barnes (1999).

4.6 Convergence

Convergence implies that the movement of the system is so small that it can be considered to
be in static equilibrium. As described in Chapter 3, this is determined from a threshold value
of the kinetic energy. In most cases, a value of 110715 has proven to be sufficient in order to
obtain results that are consistent with analytical solutions or results from other finite element
software (referring to Appendix A). The reaction forces are sometimes a bit more sensitive to the
threshold value due to their high stiffness values. This behaviour is noticeable if the maximum
reaction force constantly changes between two values where one is often much larger than the
other. In that case, it is useful to reduce the convergence threshold to 1 -1072°. The ratio
between the sum of the applied external loads and the reaction forces (which should equal 1.0)

is a useful measure to estimate the convergence status.

The convergence speed is generally slower when axial and bending goals with big differences in
stiffness are combined. In kangaroo2 terminology, this is referred to as soft and hard constraints
(Piker, 2015¢). Unless the cross section profile is small, the bending stiffness EI will be much
larger than the axial stiffness F'A. In that case, experiments have shown that the convergence
can be speeded up by slowly increasing the bending stiffness during the simulation. However, in
some cases this method is not applicable as undesirable deformations occur, which take a long
time to recover from. It also means that the user has an active role during the simulation, which

is undesirable.

During the implementation phase, the author experienced some unexpected convergence beha-
viour related to the chosen model scale. At first the model scale was chosen to be in millimetres
to be consistent with the standard units for cross section and material properties. However,
this resulted in a remarkably slow convergence speed, which questioned the entire motivation
for the calibrated structural behaviour. Through a lot of tests, the problem was narrowed down
to the model scale, which was a bit surprising. Furthermore, it only seemed to be related to
the bending goal. The issue is still unexplained but has been resolved by changing the model
scale to metres instead. For convenience, the units for the cross section and material proper-
ties are unchanged as input values but automatically converted to appropriate units inside the

component.

4.7 Stress summation

In addition to the goals themselves, other relevant functionalities have been implemented, which

operate on the output from the goals. The summation of axial and bending stresses is one such
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functionality, which is necessary to verify that a beam has sufficient load bearing capacity. The
axial stress is constant throughout the cross section of the beam whereas the bending stress
varies linearly as shown in Figure 4.7.1. The total stress value is therefore calculated from the

summation of the axial stress and the bending stress at the outer fibre.

max

(TN ==

Figure 4.7.1 — Summation of axial and bending stresses

4.7.1 Implementation

The calculation of the total stress value is straight forward but since the bending stress is
calculated per vertex, the axial stress is calculated per line and multiple beams might meet in
one point, the main task for the component is to keep track of the data structure to get the
correct results. It is important that intersecting rods are separated into different branches in a
tree structure because otherwise it is impossible to tell which bending moment belongs to which
line at the intersection. As it is desirable to get one total stress value per line segment, the
procedure is to determine the bending stresses at the start and end point of the line, take the
maximum value and add that to the axial stress. Absolute values are used since the bending
stresses have no sign. The necessary input values for the stress summation component is shown
in Table 4.7.1.

| GH Component | Input | Output \
Start particle index (bar) Total stress [MPa]
End particle index (bar)
Axial stress [MPa]

Shared particle index (rod)
Bending stress [MPa]

Table 4.7.1 — Input and output from the stress summation component

4.8 Non-linear buckling

The Kangaroo2 platform is also useful for the implementation of a buckling analysis. Buckling

is an instability mode for a structural member in compression, which leads to a sudden failure
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before the ultimate compression strength of the material is reached. The behaviour is character-
ised by a significant change in the displacements for only a small load increment and is referred
to as the bifurcation point. In the context of bending-active structures, where the members
mostly work in bending and compression e.g. when being part of a gridshell, it is important
to be able to evaluate the buckling capacity. Especially since buckling is considered to be the
dominant failure mode for reticulated shells (Malek, 2012). Furthermore, it is interesting to
study the influence of prestress on the buckling capacity, which is made possible with this tool.
Figure 4.8.1 shows a bending-active steel ribbon placed in a lawn with curious goats challenging
its stability by jumping up and down on it. The image is extracted from a YouTube video
(Murs, 2014) from which it is evident that the prestress from the initial bending of the ribbon
results in a very ductile and bouncy behaviour where the ribbon buckles into different shapes

but restores its initial configuration afterwards (helped by the ground).

Figure 4.8.1 — Goats balancing on a flexible steel ribbon (Murs, 2014)

The buckling capacity is typically quantified by means of a buckling load factor (BLF), which
expresses how much the applied load can be scaled before buckling occurs. There are two
strategies to obtain such measure; a linear and a non-linear. The linear approach is an eigenvalue
problem of the system’s stiffness matrix, which is either increased or decreased by a geometric
stiffness matrix based on the initial stress state. This implies that the deformed shape is not
taken into account, which means that this approach often overestimates the buckling load factor
(Cook, 1995). The buckling modes from the analysis only highlight the problematic areas but
the scale of the deformations are arbitrary and therefore cannot be used to evaluate how critical
a certain mode is. The method is however widely used due to its simplicity. The non-linear
approach aims to take the deformed shape into account by using an incremental load procedure,

which performs a number of equilibrium iterations in between each load increment and traces
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the displacements after each step. This analysis is more difficult to perform and requires the
specification of several parameters that all have an influence on the result. The output of the
analysis is a graph rather than one number and it is therefore up to the user to estimate the
buckling load factor from this information. However, this makes it possible to evaluate how

critical the deformation is for certain load factors.

The Karamba plug-in contains a buckling modes component, which implements the linear buck-
ling approach. One of the inputs is a value for the maximum number of iterations that are used
to calculate the buckling load factors. This often leads to the misunderstanding that Karamba
implements the non-linear approach but that is not the case. The number of iterations in this
case refers to the iterative approach that is necessary to perform an eigendecomposition of the
stiffness matrix rather than the number of iterations to reach equilibrium in each load increment.
One of the disadvantages with the implementation in Karamba is that it is impossible to extract
any information if buckling is detected. This means that it is difficult to locate the problem
and it also makes it impossible to e.g. ignore the first buckling mode which may be very local.
This is generally not a problem in other finite element software as those programs are capable

of outputting buckling load factors less than 1.0.

The non-linear solution strategy makes dynamic relaxation a useful technique and hence points
towards Kangaroo2 for the implementation in Grasshopper. The author has previously imple-
mented such non-linear buckling analysis procedure in Grasshopper using Kangaroo2 (Brandt-
Olsen, 2015) but this development only focused on the simulation of continuous shells and
without calibrated structural properties thus only used for ranking structures relative to each
other. The implementation has therefore been generalised and refined as described in the fol-

lowing.

4.8.1 Implementation

The procedure as outlined in Brandt-Olsen (2015) is implemented in a separate buckling analysis
Grasshopper component, which utilises the possibility to script the Kangaroo2 solver. The
component with its input and output is shown in Table 4.8.1. The analysis is generalised to work
for any kind of structure by defining the input as a list of permanent Kangaroo2/K2Engineering
goals (“PGoals”) and a list of K2Engineering load goals (“LGoals”). The permanent goals describe
the structure’s behaviour with respect to the initial configuration and remain unchanged during
the simulation. They can be both native Kangaroo2 goals or the calibrated K2Engineering goals.
The load goals are on the other hand continuously scaled according to the start load factor
(“LFStart”) and the step size (“LFStep”). During each load increment, the Kangaroo2 solver
performs a certain amount of iterations to reach equilibrium based on all the goals and a user
defined threshold value (“thres”). The updated positions are subsequently used to calculate the
RMS value of all the nodal displacements and from that determine whether buckling occurs or
the simulation shall continue. The buckling criteria is defined from an angle value (“alfa”) related
to the gradient of the load-displacement curve and a maximum displacement value (“dMax”),

which is useful if the structure exhibits a very ductile behaviour. The component outputs the
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overall buckling load factor, all the preceding load factors, displacement RMS values, vertices

and the output from the permanent goals for each load increment.

The code behind this non-linear buckling analysis component is available on Github (Brandt-

Olsen, 2016) and a simple example of column buckling can be found in Appendix A.

| GH Component | Input | Output \

Permanent K2 goals Buckling load factor

@rcos g b K2Eng load goals Lc.>ad factors

4@ LGoals Start load factor Displacement RMS values [m]

: tFF“ta” L Load factor step size Vertices

o h ke drus D Angle criteria[°] Goal output

¢ dvax v Max displacement criteria [m]

y i Equilibrium threshold

q opt © P .

TR | Output option
(True: output all)

Table 4.8.1 — The input and output from the buckling analysis component

4.8.2 Example: Elastica buckling with and without prestress

This example studies the buckling behaviour of three different elastica curves, that are modelled
as either bending-active (with prestress) or fabricated curved elements (without prestress) and
subjected to three different load scenarios. The elastica curves are made from a GFRP (glass
fibre reinforced polymer) material and all have the same total length of 3.0 m but with different
length /height ratios in order to evaluate the influence of curvature on the buckling capacity as
well. Table 4.8.2 shows the properties that are used for the set-up and Figure 4.8.2 illustrates
the different configurations, which in total result in 18 cases that are investigated.

’ Elastica ‘ Length(x) ‘ Height(y) ‘ Segment ‘ Diameter ‘ Young’s modulus ‘ ubL ‘ P(L/2) ‘ P(L/3) ‘

1 2.75 m 0.54 m 50 mm 8 mm 45 000 MPa 5N/m 2N 2N
2 2.50 m 0.72 m
3 2.00 m 0.98 m

Table 4.8.2 — The properties used for the buckling study of elastica curves

The results from each of the 18 cases are shown in Figure 4.8.3, Figure 4.8.4 and Figure 4.8.5.
For the cases without prestress, the buckling analyses are performed with both Karamba and
Kangaroo2 in an attempt to increase the reliability of the Kangaroo2 implementation (even
though they are based on two different methods).
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Elastica 1 Elastica 2 Elastica 3

uDL

Point load
L2

Point load

L/3

Figure 4.8.2 — Different configurations for the buckling analysis of elastica curves with and without prestress
from bending

UNIFORM DISTRIBUTED LOAD

WITHOUT PRESTRESS WITH PRESTRESS

BLF(K2): 5.95
Displ: 157 mm

BLF(K2): 5.2
Displ: 309 mm
BLF(Karamba): 3.73

BLF(K2): 7.95
Displ: 93 mm
BLF(Karamba): 5.05

BLF(K2): 9.45
Displ: 222 mm

BLF(K2): 17.2
Displ: 332 mm

BLF(K2): 15.3
BLF(Karamba): 5.81 / 16.42 Displ: 283 mm

Figure 4.8.3 — Buckling of elastica curves without (left) and with (right) prestress from bending and subjected
to a uniform distributed load
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SYMMETRIC POINT LOAD

WITHOUT PRESTRESS WITH PRESTRESS

BLF(K2): 16.0
Displ: 108 mm
BLF(Karamba): 18.0

BLF(K2): 23.0
Displ: 260 mm

BLF(K2): 23.0
Displ: 155 mm
BLF(Karamba): 25.0

BLF(K2): 31.5
Displ: 293 mm

BLF(K2): 33.5
Displ: 220 mm

BLF(K2): 46.5
BLF(Karamba): 31.22 Displ: 426 mm

Figure 4.8.4 — Buckling of elastica curves without (left) and with (right) prestress from bending and subjected
to a symmetric point load

ASYMMETRIC POINT LOAD

WITHOUT PRESTRESS WITH PRESTRESS

BLF(K2): 12.5
Displ: 208 mm
BLF(Karamba): 20.46

BLF(K2): 11.5
Displ: 208 mm

BLF(K2): 16.0
Displ: 181 mm
BLF(Karamba): 28.47

BLF(K2): 17.5
Displ: 287 mm

BLF(K2): 27.5
Displ: 310 mm
BLF(Karamba): 33.13

BLF(K2): 28.5
Displ: 387 mm

Figure 4.8.5 — Buckling of elastica curves without (left) and with (right) prestress from bending and subjected
to an asymmetric point load
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The following observations are made:

e Karamba vs. Kangaroo2 (without prestress). The results from the two analyses
are very similar for the scenarios with a uniform distributed load and a symmetric point
load. In the first case, Karamba underestimates the buckling load factor slightly whereas
it is the opposite case for the latter. The deviation between the two analyses is larger
for the asymmetric point load scenario, where Karamba overestimates the buckling load
factor with a more significant amount. Even though the buckling analyses are based on
two different approaches, it is useful to observe a similarity between the results (at least

for the first two cases) to gain more confidence in the implementation.

e Curvature. It is clear that more curvature is beneficial for the buckling capacity hence
elastica 3 performs better in all three load scenarios with and without prestress. For the
uniform distributed load it is especially interesting that the increased curvature for elastica
3 eventually helps to stiffen the sides as they become more vertical, which turns the middle

into the weakest part instead.

e Load. From this set-up it is not possible to compare the results between the uniform
distributed load and the point loads. This is because the resultant force from the UDL
is larger than the point loads and it is therefore natural the the buckling load factors are
smaller for this load scenario. However, the point loads have the same magnitude and the
influence of the force location can therefore be evaluated. Interestingly, the buckling load
factors from Karamba indicate that the elastica curve is most vulnerable to buckle under
the symmetric point load whereas the results from Kangaroo2 suggest that the asymmetric
point load is more critical. Since the UDL case highlights that the sides are the weakest
part, it seems more intuitive that the elastica curve buckles earlier under the asymmetric

point load.

e Prestress effect. As Karamba is not capable of modelling prestress from initial bending,
the effect is evaluated from a comparison between the Kangaroo2 results only.
Uniform distributed load: For the uniform distributed load it is observed that the increasing
prestress from curvature only has a beneficial effect on the buckling load factor for elastica
1 and 2. It therefore seems like the prestress has a stiffening effect when the curvature is
low. However, for elastica 3 the prestress level becomes sufficiently high that it weakens
the ability to withstand the applied load instead. This is an interesting balance and makes
it hard to predict whether prestress has a positive or negative effect for the stability of
a structure. Furthermore, it is observed that the buckling modes from the prestressed
state emphasise the weakness of the sides and thus encourage a more asymmetric buckling
behaviour.
Point loads: Tt is clear that the prestress introduces a much more ductile behaviour, which
makes it very difficult to determine a buckling load factor. The displacements escalate
slightly at a later stage but it is questionable whether this behaviour can be characterised

as buckling at all. In this case, the maximum displacement is a more critical design criteria
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for the structure. It makes sense that the prestress introduces a more ductile behaviour
because the sudden change in displacements only occurs due to compressive forces and
not bending action, which the prestressed elements are dominated by. These observations
correspond well with the behaviour of the steel ribbon from Figure 4.8.1.

The reason why the ductile behaviour is more significant for the prestressed elements
in the point load scenarios may be related to the similarity between the elastica curves
and a catenary shape. A catenary shape is very effective when subjected to a uniform
distributed load as it transfers the forces in pure compression. However, this makes it
vulnerable to buckling. On the other hand, if the catenary is subjected to a point load
instead, it becomes less efficient as it resists the applied load by a combination of axial
and bending action. When bending action becomes more dominant, the risk of buckling

decreases.
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Chapter 5

Smart Geometry 2016

Smart Geometry is a yearly event, which focuses on the application of digital tools in the
design process. It consists of a four days workshop followed by two conference days where the
interaction between new technology and a broad variety of disciplines is explored. The aim is to
create inspiring and informed architecture whilst simultaneously handling fabrication challenges.
This year the event was hosted by Chalmers University of Technology in Gothenburg and the
theme was “Hybrid Domains” (SmartGeometry, 2016).

5.1 Workshop proposal

The Smart Geometry workshop was divided into ten so-called “clusters” with different topics
related to Hybrid Domains. These ten clusters were selected amongst more than forty workshop
proposals by the Smart Geometry team. The author was part of the expert team behind one
of the clusters called “Calibrated Modelling of Form-Active Hybrid Structures” together with
Gregory Quinn (KET at University of Arts in Berlin), Anders Holden Deleuran (CITA), Daniel
Piker (McNeel and Foster+Partners), Will Pearson (McNeel and Format) and Harri Lewis (Mule
Studio). The expert team had a shared interest in using Kangaroo2 with calibrated structural
properties from various different projects in the past and this formed the basis for the cluster

proposal.

The specific research question was: “How can we implement projection based dynamic relazation

methods to unlock the latent potential of form-active hybrid structures?” (Deleuran et al., 2016)

A number of contributions by the cluster experts helped to support this research question:

¢ Extending Kangaroo2 to output and visualise structural properties (as described in Chapter
4)

e Validation of structural behaviour through comparisons with analytical solutions and other

FEA packages (referring to Appendix A).
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e Validation of structural behaviour through physical testing by means of a projection board

e A modelling pipeline that integrates coarse geometry modelling, form-finding, analysis and

fabrication into one smooth workflow

e Continuous improvements of the Kangaroo2 solver and addition of new goals to support

the initiatives mentioned above

It was decided to limit the type of elements to GFRP (glass fibre reinforced polymer) rods and
plastic cables to ensure a reasonable outcome of the workshop within the very limited time

frame.

5.2 Projection board

The projection board enabled the interaction between digital and physical and thus helped to
verify identical behaviours. The set-up was developed by Gregory Quinn and consisted of a white
board with pre-drilled holes in a grid arrangement, a projector which overlay a digital simulation
using the same grid, different bolts for pinned and roller type supports (see Figure 5.2.1), GFRP
rods with various radii, strings and 50 g weights. The first step was to select a specific set-up,
which was modelled both digitally and physically with identical support conditions and weights.
It was then possible to determine the Young’s Modulus of the GFRP rods by adjusting the
stiffness value in the digital model until the same deformed shape emerged. The set-up could
then be adjusted e.g. by applying more weights and it was observed how the deformed shape in
the digital and physical model remained identical to each other and thus confirmed the accuracy

of the simulation.

In addition to plotting the deformed shape, the set-up also allowed to overlay other structural
properties such as normal-, shear- and reaction forces as well as bending moments at interactive
speed. This helped to explain structural principles and the participants were able to directly
relate them to the physical experiences they were having at the same time. The projection board
thus proved to be a very useful learning tool. It was furthermore extended to work with a physical
marker, which was recognised by Grasshopper via a webcam and this allowed the deformation of
the physical rod to be controlled by hand (rather than weights) whilst simultaneously overlaying
the digital plots (Quinn, 2016).

64



Figure 5.2.1 — Projection board kit for different support types (credit to Gregory Quinn)

Figure 5.2.2 — Projection board setup (credit to Gregory Quinn)
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5.3 Modelling pipeline

The modelling of coarse geometry, form-finding, analysis and fabrication details were integrated
into one smooth workflow (modelling pipeline) developed by Anders Holden Deleuran. All
functionalities were scripted with custom Python components in Grasshopper but used clever
methods to only operate in the background such that all modelling activity happened in Rhino

and key parameters from the Grasshopper script were accessible through a remote control panel.
The modelling pipeline was divided into the following subcategories:
ASSEMBLY GEOMETRY

The coarse geometry was modelled with points and polylines in Rhino and arranged in appro-
priate layers (cables, beams or anchors). The Grasshopper script then automatically referenced
these polylines, subdivided them into smaller segments based on a defined length and sent them
back into Rhino. The division into smaller segments made it easy to snap different elements

together in order to quickly model different geometries.
FORM-FINDING

By pressing a “solve” button in the remote control panel, the elements in the different layers
were assigned with fictitious stiffness properties according to their structural characteristics
to initiate a form-finding process using Kangaroo2 with native goals. The form found shape
was subsequently sent back to Rhino such that the effect on the shape from adding/removing
elements could be immediately evaluated. The fictitious stiffness properties were useful for
modelling at interactive speed and still reflected the structural behaviour.

STRUCTURAL

After the form-found shape was established, a “calibrate” button enabled these fictitious proper-
ties to be replaced by real material properties (specified by the user) such that stresses and de-
flections could be accessed. This step changed the original Kangaroo2 goals into K2Engineering
goals and added self-weight to the structure. Visualisation of the forces and moments were

subsequently activated by check-boxes in the remote control panel.
TOPOLOGY AND FABRICATION DATA

To make the construction of the hybrids easier, the modelling pipeline had an option to output
an assembly graph (using the external libraries GraphViz and NetworkX). This graph showed

the connectivity between all the elements, their type (beam or cable) and lengths.

Initially the participants were given the task of making small physical models to acquire an
understanding of the materials and how they could be combined to produce hybrid action.
Good hybrid behaviour was characterised by an efficient force distribution when the model was
subjected to pushing/pulling at different locations, which was achieved by having more cables
than rods (axial forces being more effective than transferring loads via bending action). One

of the models, which performed particularly well is shown in Figure 5.3.1. It was made from
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two “tear-drop” shaped rods of different lengths that met at the top, were bent backwards and
held in place by a back tie. A fan-like cable system in front helped to distribute the loads in an
efficient way and made the whole structure very stiff.

Figure 5.3.1 — Exploration of hybrid concepts

Subsequently, the participants had to recreate the shape and simulate the structural behaviour
of their physical prototype using the modelling pipeline. It proved to be an important tool to
explore many variations in a short time as the physical prototyping quickly revealed the difficulty
of connecting elements together and cutting the elements in the right lengths to obtain a desired

spatial shape.

Figure 5.3.2 shows the recreation of the physical model from Figure 5.3.1 in a digital environment
and consisted of the following steps:

1. Model coarse beam geometry with polylines and place an anchor point at the bottom
2. Add a cable from the bottom to the midpoint of the beam

3. Move the two outer points of the triangle out of plane and increase the cable stiffness to

obtain a desirable three dimensional tear-drop shape
4. Add cables in a fan arrangement to stiffen the structure

5. Calibrate the model to real material properties to verify that the beam can obtain the

desired curvature without exceeding the material strength

67



6. Extract assembly graph to get an overview of the connectivity and element lengths

Figure 5.3.2 — Digital recreation of hybrid concept

5.4 Tower challenge

The participants were challenged to built a tall hybrid tower based on their experience from
the smaller models. The strategy was to design a simple hybrid unit and then stack and/or
rotate these to create the entire tower structure. The concept from above was further refined
and rotated around a vertical axis to create one layer of the tower. Multiple layers were then
added on top of each other (bottom of tear-drop beam to middle of cable fan) and by flipping
the bent direction of the units in one layer, interesting curvature variations emerged as seen in
Figure 5.4.1.
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The structure was analysed under self-weight, which resulted in maximum bending stresses of
525 MPa and a maximum deflection of 50 mm at the middle of each beam in the second layer.
The bending stresses were evaluated to be within an acceptable range as the flexural strength
of the GFRP material was 900 MPa. The total weight of the 3 m tall tower was only 3 kg!

Figure 5.4.1 — Digital model of the tower design (credit to Léa Boulic)

The tower was originally designed as three stacked layers but due to a very smooth assembly
process and the fact that the structure was so stiff, it was decided to add another two layers
resulting in a 5 m tall hybrid tower as seen in Figure 5.4.2. A direct comparison between the
physical and digital model was difficult to make because of the extra layers and the fact that the
connection details were created from tape and staples and hence associated with inaccuracies.
However, the built tower felt surprisingly stable when subjected to different kinds of loads and

was part of the workshop exhibition on the last day.
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Final hybrid tower (5 m tall)

Figure 5.4.2 -
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Chapter 6

GFRP gridshell design

This chapter describes the design of a bending-active gridshell made of GFRP rods. The purpose
of the case study is to demonstrate the capabilities of the developed analysis tool and the

advantages of having the entire workflow integrated in Rhino/Grasshopper.

6.1 Brief

Figure 6.1.1 — Gridshell location at Torvehallerne (dotted line)
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The gridshell is a design for an outdoor market stall at Torvehallerne in Copenhagen. The aim is
to create an interesting and inspiring space, which adds quality to the outdoor area in-between
the two main halls and encourages people passing by on Frederiksborggade to enter the market
area (see Figure 6.1.1). The gridshell has to fit within a footprint of 10.0 x 8.0 m and the height
is restricted to be within 2.1 - 3.5 m.

6.2 Shape generation

There are several different strategies for the design of gridshells, which are highly related to the
intended construction method. One common technique is to lay out a flat grid in plan and then
push parts of the boundary inwards to create the spatial shape. The key behind this strategy is
that the grid has no shear rigidity during the form-finding process but when the desired spatial
shape has been found, it is locked into its position by adding bracing elements. The largest
design flexibility is obtained by having pinned connections between the laths such that wrinkles

are avoided. This technique was used for e.g. the Multihalle Mannheim (Naicu et al., 2014).

If the desired spatial shape is already defined, the problem rather becomes how to lay out a grid
on that surface. The so-called compass method addresses this problem by iteratively setting
out equal distance point on a surface based on two input curves (Popov, 2002). The resulting
geometry is also known as a Chebychev net and the advantage is that the grid arrangement can
be defined in the plane and then lifted or draped into its spatial configuration. This technique
was used for the Saville Garden gridshell (Naicu et al., 2014). The curve network may also
be defined as geodesics lines on the input surface, which is particularly useful when timber
laths with significant anisotropic properties are used for a bending-active gridshell (like the
OnGreening Pavilion). Thereby bending about the strong axis is avoided and this reduces the
stress level from initial bending of the elements. The choice of using geodesic lines necessitates

a sequential erection method.

The shape generation method for this gridshell design is an adapted version of the “grid-to-
shape” method, which defines the spatial shape from the bending of a number of parallel primary
rods. The secondary rods and bracing rods are subsequently added. This makes the assembly
process a bit more complicated compared to the alternative approach where the entire grid is
defined in the plane and pushed into its spatial shape. The reason for this choice is related to
the current state of the modelling technique that is used during the form-finding process; the
rods are modelled with both axial and bending stiffness along their lengths but this makes the
connections rigid because the two coincident nodes at an intersection are combined into one.
This implies that the rods cannot rotate at the intersections and hence restrain the structure too
much during the form-finding process such that wrinkles develop. To avoid this, it is necessary
to separate the two layers and model the connections with e.g. zero length springs to provide
the necessary rotational freedom. The visual effect of this strategy is that the primary rods are
no longer perfectly vertical as the grid arrangement influences the overall shape. However, this

modelling refinement has not been included in this thesis.
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The overall shape of the gridshell is defined by two boundary curves in the plane as illustrated
in Figure 6.2.1 (1). For simplicity it is chosen that all the primary rods have the same length
such that the order becomes irrelevant during the assembly (Figure 6.2.1 (2)). The spatial shape
is then generated by moving the end points of the rods towards the defined boundary curves
(Figure 6.2.1 (3-4)). Lastly, the secondary and bracing rods are added (Figure 6.2.1 (5-6)). The
equal length constraint introduces an interesting “reciprocal” relationship between the width
of the boundary curves and the height of the gridshell. Furthermore, it has the advantage of
making the surface area approximately constant when the boundary curves are modified, which

makes it possible to directly compare the structural performance of different configurations.

The asymmetry of the boundary curves creates a more interesting and less predictable space
and it fits well into the site context since one side of the gridshell faces the building next to it

and the other side opens up towards the market place as seen in Figure 6.1.1.
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Figure 6.2.1 — Gridshell shape generation. 1. Definition of boundary curves. 2. Lay out primary rods of equal
length in the plane. 3. Move endpoints inwards to fit the boundary curves. 4. The spatial shape defined by the
boundary curves and equal length constraint. 5. Addition of seconday rods. 6. Addition of bracing rods

6.3 Material

It is chosen to build the gridshell from GFRP rods because the material is very light, flexible
and has a high strength. All these properties are advantageous when designing bending-active
structures. In comparison with timber, which is often used for bending-active gridshells, the

strength /stiffness ratio is approximately 3 times larger and the strength/density at least 2 times
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larger. Fibrolux (2016) is an example of a supplier of GFRP rods with the material properties

as specified in Table 6.3.1 and with diameters available in the range between 1.2-80 mm.

The circular sections are well suited for the K2Engineering analysis and the size of the pavilion

makes it possible to build it from a single layer of rods, which simplifies the modelling.

GFRP Young’s modulus | 40 000 MPa
GFRP Density 2000 kg/m®
GFRP strength 900 MPa

Table 6.3.1 - GFRP material properties (Fibrolux, 2016)

6.4 Design exploration

Initially five different variations within the defined design space are investigated. The structural
performance of each variation is measured in terms of the axial forces, bending moments, re-
actions, stresses and deflections. Table 6.4.1 shows the design variables that are kept constant
throughout this study.

Primary length 8.0m
Primary spacing 0.5 m
Secondary spacing 0.4 m
Free edge diameter 24 mm
Primary diameter 20 mm
Secondary/bracing diameter | 16 mm
Total weight ~300 kg

Table 6.4.1 — The predefined gridshell design parameters

Each gridshell design is subjected to a load case that includes the self-weight and a dominant
wind load in the direction towards the side of the structure, where it is most vulnerable (1.0 -
SW 4+ 1.5- W ). The wind load is not easily defined for freeform shapes and it is not within
the scope of this study to develop an accurate model for this. Instead the aim is to define a
simplified version that reflects an approximate behaviour as described in the following:

e The wind load in the city for a height less than 10.0 m and a wind speed of 24 m/s is
0.4 kN/m? according to EN 1991-1-4 DK NA

e A perforation factor is included to account for the fact that the gridshell is not a solid
surface. This factor is calculated as the ratio between the total length of all the rods
multiplied with the largest section diameter and the total surface area. The wind load is
subsequently reduced by this factor.

e A triangulated mesh that covers the entire gridshell surface is created and the normal

vectors at the vertices (which coincides with the intersection points of the rods) are defined

74



from a weighted average of their neighbouring mesh face normals. The projection of each
normal vector onto the specified wind direction determines the direction (inwards pressure
if the dot product is negative and outwards suction if the dot product is positive) and the
magnitude such that a variation over the surface is obtained (if the dot product is 1.0 i.e.
parallel normal and wind direction then the magnitude is 1.0 and if the dot product is
0 i.e. perpendicular normal and wind direction then the magnitude is 0). The result of

these operations is a number of scaled vectors in the vertex normal directions.

The voronoi area around each vertex is calculated from a hybrid method as described
by Meyer et al. (2002) and multiplied with the reduced wind load value (due to the
perforations) to obtain the lumped nodal force.

Lastly, the lumped nodal force in each vertex is multiplied with the scaled normal vectors
and the load case wind coefficient, which gives the wind distribution as illustrated in Figure
6.4.1.
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Figure 6.4.1 — The simplified wind load acting on the gridshell
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6.4.1 Design1
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Figure 6.4.2 — Gridshell design 1: Geometry and structural performance
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6.4.2 Design 2
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Figure 6.4.3 — Gridshell design 2: Geometry and structural performance
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6.4.3 Design 3
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Figure 6.4.4 — Gridshell design 3: Geometry and structural performance

78



6.4.4 Design 4
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Figure 6.4.5 — Gridshell design 4: Geometry and structural performance
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6.4.5 Design 5
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Figure 6.4.6 — Gridshell design 5: Geometry and structural performance
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6.5 Design selection and refinement

The deflection is the most interesting of the structural performance parameters as the structure
is very lightweight and flexible. It is furthermore observed that the maximum utilisation of the
elements is approximately 0.5, which implies that the stresses are not a problem. Design 1 with
the most simple boundary curves has the largest deflection of 41 mm whereas the other 4 design
variations have a maximum deflection in the range between 4-16 mm. This significant reduction
shows the importance of curvature as a means of stiffening the shell. Design 3 is particularly
stiff and from a comparison with the three other design variations, it is observed that different
frequencies of the boundary curves and a reduction of the width at the middle are beneficial

design parameters to stiffen the shell.

When designing bending-active structures it is expected that the deflections are larger than in
a normal structure. For a 10 m long gridshell it is evaluated that a maximum deflection of
50 mm is acceptable (L/200). All five design variations thus fulfil this requirement and the
selection is therefore mainly influenced by the aesthetics of the pavilion. In this case, the most
efficient design is also evaluated to be the most aesthetically pleasing design and hence Design

3 is selected for further refinements.

The first step is to reduce the diameters of the rods since the maximum deflection for this design
is so small. The total weight is approximately halved compared to the initial design exploration

with the rod diameters as shown in Table 6.5.1.

Free edge diameter 16 mm
Primary diameter 14 mm
Secondary/bracing diameter | 12 mm
Total weight 161 kg

Table 6.5.1 - Reduced diameters of the rods

The structural performance under three different load cases are subsequently investigated:

1. 1.0-SW
2.10-SW+15-54+045-W

3.1.0-SW+15-W

Here SW is the self-weight, S is the snow load and W is the wind load. All load cases include
the prestress of the rods from initial bending. The perforation factor (as described previously) is
now doubled to account for the additional area around the circular sections, which is influenced
by the wind as well. The snow load is set to 0.9 kN/m? according to EN 1991-1-3 DK NA and
multiplied with the horizontal voronoi area around each node in the mesh in order to calculate

the lumped nodal forces. For simplicity, the same perforation factor is used.
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6.5.1

Analysis results
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Figure 6.5.1 — Structural performance for load case 1
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Axial force
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Figure 6.5.2 — Structural performance for load case 2
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LOAD CASE: 1.0SW+1.5W
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Figure 6.5.3 — Structural performance for load case 3
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Load case 1 is useful to understand the behaviour from the initial prestress of the rods. In-
terestingly, the maximum stress level of all the load cases occurs here. This is because the
snow load introduces bending in the opposite direction of the moment from prestress and the
wind load vanishes along the top according to the chosen distribution i.e no suction to further
increase the moment at the top. This highlights the significance of the initial prestress, which
is the dominant contribution to the stress level. Baverel et al. (2012) describe the same be-
haviour for a built example of a GFRP gridshell (Soliday’s Pavilion in Paris). The maximum
bending stresses are located at the top of the free edges where the curvature is largest and a
band with increased stresses across the middle is also noticed as a result of the curvature of
one of the boundary curves. Whilst the primary curves are in equilibrium on their own, the
displacements are caused by the added secondary and bracing rods, that also want to straighten
out. The behaviour is most significant in the areas where the secondary rods meet the free
edges. This may be a result of the connections being modelled as rigid everywhere except at
the free edges where the connections are pinned. The movement at the middle of the gridshell
is more restrained but the attempt of the secondary rods to straighten out is noticeable from

the increased tension/compression forces at these locations.

Apart from the bending stresses, the other structural performance parameters increase for load
case 2 and 3. The maximum displacement is approximately the same and occurs in the same
curved band along the suction side of the gridshell. It is evident how the extra curvature
at the middle helps to stiffen the shell and pushes the displacement band closer to the top.
The difference between the two load cases is most clear from the two additional displacements
“pockets”’, which for the snow load develop closer to the top and for the wind load develop closer
to the boundary (both inwards). The high strength/stiffness ratio of the GFRP material means
that the deflections become the critical parameter to design for. The maximum displacement
value of 19 mm suggests that the diameters of the rods are further reduced or the spacing
between the rods are increased. However, a reduction of only 2 mm of each rod’s diameter
increases the maximum deflection to approximately 65 mm. This is evaluated to be too much

and buckling issues may occur before this point.

The largest reaction forces occur at the middle of the gridshell due to the suction from the wind.
This means that the structure has to be properly tied down.
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6.5.2 Buckling

A non-linear buckling analysis of the gridshell is performed for a load combination including pre-
stress, self-weight and wind. Even though the stresses and deflections are within an acceptable
range using factored loads, buckling may still be an issue. A load factor step size of 0.1 is
used for the buckling simulation, which continues to run until a maximum deflection of 500
mm is reached. The deformed shape from each iteration is stored and subsequently analysed
to detect when buckling occurs. Figure 6.5.4 and Figure 6.5.5 illustrate the deformed shape
from a number of selected load factors (“LF). Up until a load factor of 3.0 the displacements
slowly increase with no sudden change for any of the elements. However, it is observed how
a small displacement pocket (purple area) on the left side from the top view starts to develop
and between LF=3.0 and LF=3.1 the maximum displacement suddenly changes from one side
of the structure to the other due to local buckling of some elements. The buckling load factor

is therefore estimated to a value of 3.1, which means that the structure is sufficiently stiff.

Sometimes these local buckling modes can be ignored if the deflections are within an acceptable
range, the shape is still in a good condition and the structure finds a new stable configuration.
Figure 6.5.5 illustrates the behaviour when the load increments continue. The structure finds
a stable configuration again where the displacements slowly increase up until a load factor of
4.9. After this point, local buckling occurs first at another part in the same area as before (a

bit further up) and shortly afterwards in a second displacement pocket.

86



Chapter 6: GFRP gridshell design

LF 0.9
Max displ: 10 mm

RVAVAVARY NV
VARV
WAV HAAY

Y
N

LF 1.9
Max displ: 25 mm

j
ININNNINA
VNNAINANNNY
ANINANINA
NANZNZINGIN

4 N ) LT LF 3.0
NNNNN Max displ: 44 mm
NN
NNV
VNN INEINA
VIMAVIAV@WM /
VINVINVINEINA
J q&ggmm i
NANANANZNANY \. 7 ‘
TANVANVARNVANVANVARNERY gaey e
NANANVANVARYVANVANY ¢
NANANVANY N
\VA\VA‘W\VA&A
NVANVANYAS

LF 3.1
Max displ: 58 mm

Figure 6.5.4 — Selected deformations of the gridshell during a buckling analysis (part ). “LF" is the load factor
and the grey box indicates when buckling is detected
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Figure 6.5.5 — Selected deformations of the gridshell during a buckling analysis (part I1). “LF" is the load factor
and the grey boxes indicate when buckling is detected
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6.5.3 Connections and supports

a) b)

Figure 6.5.6 — Different options for the GFRP gridshell connection detail. a) Standard swivel scaffold connection.
b) Wrap around connection of metal wire or fabric tape

For gridshells made from circular cross sections, the two most common connection types are a
swivel scaffold connection or a wrap around solution (Quinn and Gengnagel, 2014) as shown in
Figure 6.5.6. Both connectors allow rotation of the intersecting rods, which is the ideal property
to enable sufficient freedom during the erection process. The bracing layer are then connected
with a similar type of connection to the secondary layer. In this case study, the connections are
analysed as rigid due to the simplified modelling technique. This implies that if the described
connectors are used in practice, the gridshell becomes less stiff. Due to the small deflections

from the analysis, this may be acceptable in this case.

The analysis shows that the supports have to be designed for an uplift force of maximum 3.2
kN corresponding to 320 kg. Figure 6.5.7, Figure 6.5.8 and Figure 6.5.9 illustrate different ideas
for how this detail at the boundary may be designed. The challenge is that the primary rods
meet the boundary with different angles. Option 1 (see Figure 6.5.7) is a curved edge beam
made from two timber panels that meet at a right angle. The beam has triangular stiffeners
along its length, which the primary rods are fastened to by simple brackets with appropriate
inclinations. The edge beam is subsequently anchored to the ground. This solution gives a nice
and clean expression from the outside but might be a bit tricky with regard to the bracing rods.
Option 2 (see Figure 6.5.8) is based on the addition of an extra rod along the boundary of the
gridshell. The connections between this rod and the primary rods are similar to the rest of the
gridshell. This boundary rod is then fixed to a curved edge beam with simple brackets. The top
part of the edge beam is split into segments in order to make space for the connectors between
the intersecting rods. The edge beam is similarly anchored to the ground. Option 3 (see Figure
6.5.9) uses a metal sleeve with a flat plate welded to it, which is bolted to an angle bracket and
fixed to a curved edge beam. However, the rod diameters are very small and it is questionable

whether this solution is applicable at this scale.
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Figure 6.5.7 — Support option 1

Figure 6.5.8 — Support option 2

é

Figure 6.5.9 — Support option 3
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6.6 Final design

The final design of the GFRP gridshell for a market stall at Torvehallerne is visualised in Figure
6.6.1.

Figure 6.6.1 — The final gridshell design

The case study demonstrates how the developed tool helps to assist during the early design
stage. Multiple configurations are easily explored and the visualisations help to build an intuitive
understanding of the structural behaviour. The performance of the individual designs is quickly
evaluated from the output of maximum axial forces, reaction forces, bending moments, total
stresses and deflections. This helps to inform the design selection process and the subsequent
analysis shows to which extend the design can be refined before a more detailed analysis with
advanced finite element software is necessary for structural validation and design of connection
details.
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Chapter 7

Conclusions

7.1 Summary

The aim of this research was to improve the current workflow related to the design and ana-
lysis of form-active structures within the Rhino/Grasshopper environment. The literature and
software review highlighted that the integrated finite element software Karamba had limited
capabilities in this context due to the large deformations related to these structures. On the
other hand, the Grasshopper plug-in Kangaroo2 showed great potential as it inherently dealt
with these large deformations from its underlying dynamic relaxation solving technique and
with improved stability such that real world material properties could be used. This made it
the ideal platform to built this research upon and the ability to analyse form-active structures
within the Rhino/Grasshopper environment was therefore accomplished by the development of
a plug-in, which extended this Kangaroo2 framework with calibrated structural behaviour and

output.

The implementation included a number of custom Kangaroo2 goals, which mimicked axial and
bending behaviour based on a 3 DoF system in order to model cables, bars and beams. The
output from the goals played an essential role for this development such that axial forces, shear
forces and bending moments became accessible and hence made it possible to evaluate the
structural performance. The output was also used to provide additional geometrical data and
information about the system for visualisation purposes and stress summation. Comparisons
with analytical solutions and results from Karamba (for appropriate kind of structures) showed
excellent compliance and were an important factor to improve the reliability associated with the

software such that the results for more complicated structures could be trusted.

The developed plug-in was tested during the workshop days at the Smart Geometry conference
and integrated in a modelling pipeline to evaluate the structural performance of a 5 m tall hybrid
tower of GFRP rods and plastic cables. The interactive environment with live feedback on the

structural performance showed great potential for further exploration of form-active hybrid
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structures in general. The case study of a GFRP gridshell also demonstrated the advantages
of this workflow to quickly explore five design variations and use the structural performance
output to guide the selection process. A subsequent refinement of the selected design illustrated

the level of detail of the analysis, which helped to halve the material consumption.

7.2 Discussion and future work

The developed K2Engineering plug-in is only the early stage of a larger potential of analysing
form-active structures based on the Kangaroo2 framework. The implementation so far only
represents the simplest elements i.e. cables, bars, beams and simple supports in a 3 DoF system.
Whilst this 3 DoF system reduces the complexity and increases the speed of the simulation it also
means that e.g. modelling of bending behaviour necessitates a requirement for two consecutive
line segments and is limited to a cross section with rotational symmetry. Similarly, it is only
possible to model rigid supports by having two consecutive pinned supports. When working
inside the boundary of those limitations, the tool has already proven useful as demonstrated by
the Smart Geometry workshop and the gridshell case study. Breaking down the behaviour into
simple goals also has a big value for educational purposes and helps to explain basic structural
principles. However, most structures are not only built from tubular sections and hence require
the consideration of e.g. biaxial bending and torsion as well. Membranes are also a key element
in the design of form-active structures and whilst a cable-net abstraction can be used for the

early stage design, it is desirable to develop a proper CST (constant strain triangle) element.

Methods have already been developed to simulate biaxial bending and torsion based on 4 de-
grees of freedom rather than the usual 6 and one of these can potentially be integrated with
Kangaroo2. However, these methods become fairly complex and are naturally involved with
some assumptions (like the rod goal) in order to achieve the same behaviour with less degrees
of freedom. Instead of using these workarounds, a better approach is perhaps to implement the
functionality in a 6 DoF system. According to Daniel Piker, it is only a matter of time before
Kangaroo2 is extended to such a system, which supports the idea of that development path.
The desire for more accuracy is however at the cost of computational speed and this balance
questions the overall purpose of the structural calibration with Kangaroo2: Is the interactive
level and ability to engage with the simulation a higher priority than the structural accuracy?
The interactive level is what makes Kangaroo so powerful and is very useful in the early stage
of the design development. On the other hand, the increased stability of the solver has allowed
real world material properties to be used and with that opened up for the possibility to calibrate
the simulation to accurate structural behaviour. Even with a decreased simulation speed from
more advanced goals, it is still advantageous with an analysis that takes half an hour to perform
compared to several hours in a standard finite element program. It thus seems like the more
advanced goals still have a gap to fill out and if interactive speed is the priority then the more

simple goals can be used.
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7.3 Perspective

The developed K2Engineering plug-in has already proven to be useful for two projects at Format

Engineers and this confirms that it fills out a gap in the existing software.

7.3.1 Clamshell Tent

The plug-in was used for the analysis of a tent-like structure made from tubular aluminium
arch frames and a PTFE membrane as shown in Figure 7.3.1 (top). The arch frames were
modelled as prefabricated curved elements with interconnected struts and the membrane as
a cable-net. The purpose of the analysis was to investigate the effect of pretensioning the
membrane on the deflections and bending moments. The structure was subjected to a load case
that combined self-weight, dead load and wind load. The result from the analysis is illustrated
in Figure 7.3.1. When the membrane was pretensioned, it had less slack areas (noticeable from
the ratio between green and blue colours) and reduced the maximum deflection of the membrane
significantly. At the same time, the axial forces in the membrane became larger and the bending
moments and maximum deflection of the arch frames increased as well from the pulling. The
problem with Karamba in this case was that the membrane could only be modelled as a shell
working in both tension and compression and a reduction of the thickness caused buckling issues.
The K2Engineering plug-in therefore proved to be very useful in order to model the structural
behaviour of the Clamshell Tent and ensured that the right compromise were found before the

final analysis were carried out in a more advanced finite element software.
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Figure 7.3.1 — Clamshell Tent analysis with K2Engineering. Client confidential



7.3.2 UWE Pavilion

A bending-active timber gridshell was designed for the graduate year show 2016 at the University
of the West of England (UWE). The design was developed by the architecture students led by

John Harding and with support from Format Engineers to validate the structural behaviour.

A Karamba model was initially set up to analyse the structure using the same approach from
the OnGreening Pavilion (superimpose prestress from initial bending). However, the structure
failed under Karamba’s linear buckling analysis when subjected to wind load and it was unknown
how critical the failure was and how much it would take to make it work. As a consequence,
the overall shape of the pavilion was modified to incorporate more curvature at the boundaries
as shown in Figure 7.3.2. This made the structure much stiffer but still not enough to avoid
buckling failure according to Karamba and it was difficult to increase the thickness of the laths

as that would cause failure from initial bending.

Therefore it was decided to analyse the structure with the K2Engineering software with an
acknowledgement of the challenge related to the anisotropic cross section properties of the laths.
Only 1/3 of the structure was considered due to the rotational symmetry and an assumption
that the middle part would be very stiff. The issue of anisotropic cross section properties was
addressed by the use of a weighted average of the moment of inertia about the weak and strong
axis and the overall behaviour was compared to the Karamba model to ensure a reasonable
coherence. The analysis helped to identify that the utilisation from prestress was too high for
some laths close to the middle where the curvature radius was small (approximately 750 mm).
The thickness of those laths was therefore reduced. Furthermore, a non-linear buckling analysis
was carried out (referring to Figure 7.3.3), which showed a very ductile behaviour due to the
prestress of the laths, no local buckling for load factors up to at least 1.5 and deflections within
an acceptable range. The analysis also highlighted the vulnerable area close to the free edge,
which as a consequence hereof was strengthened on site with additional laths. These observations
helped to increase the confidence that buckling would not become an issue.
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Appendix A

Structural validation

This appendix provides additional examples that serve to increase the reliability of the developed
K2Engineering plug-in. In each test case, the results from the K2 analysis are compared with
either analytical solutions or results obtained from the finite element program Karamba. The

displacements are kept small to make the comparisons fair.

A.1 Axial behaviour

A.1.1 Tension

A steel cable is pinned in one end and subjected to an outwards force in the other end. Table

A.1.1 shows the different properties for the set-up.

’ Length \ Segments \ Diameter \ Area \ Young's modulus \ Load ‘
[10m | 10 | 10mm [7854mm® [ 2.1-10° MPa [ 500 kN |

Table A.1.1 — Properties used for the tension example

ANALYTICAL SOLUTION

The tension force in the cable is constant and equal to the applied load of 500 kN. The reaction
force also has the same magnitude but in the opposite direction of the load. The extension of
the cable can be calculated from Hooke’s Law (as described in Chapter 4)

__ 500-10%-1000 __
T = 5110578.54 — S0-3 mm

K2ENGINEERING RESULTS

The result obtained from the K2Engineering analysis is shown in Figure A.1.1 and is consistent

with the analytical solution.
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Figure A.1.1 — K2Engineering tension example. Reaction force in [kN] and deflection in [mm].

A.1.2 Pretension

A cable is pinned in both ends and pretensioned. No additional loads are applied. Table A.1.2
shows the properties that are used for the set-up. A constant tension force in each element equal
to the specified pretension is expected as well as outwards pointing reaction forces (since the

cable tries to shrink) of the same magnitude.

’ Length ‘ Segments ‘ Diameter ‘ Area ‘ Young’s modulus ‘ Pretension ‘
[10m | 10 | 10mm [7854mm” [ 21-10°MPa [ 200kN |

Table A.1.2 — Properties used for the pretension example

K2ENGINEERING

The result from the K2Engineering analysis is shown in Figure A.1.2. This is in accordance

with the expected behaviour as described above.
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Figure A.1.2 — K2Engineering pretension example. Reaction forces in [kN].

A.1.3 Catenary

A catenary shape with 1.0 m between its end points is used as initial geometry for a steel cable

that is subjected to a point load in each node. The following properties are used:

’ Diameter \ Area \ Young's modulus \ Point load ‘
[ 10mm [ 7854mm® | 21-10°MPa | 100 kN |

Table A.1.3 — Properties used for the catenary example

K2ENGINEERING

The axial- and reaction forces from the K2Engineering output are shown in Figure A.1.3. The

maximum displacement at the middle is 21.3 mm.
ANALYTICAL

The forces are also calculated from graphic statics methods in order to validate a correct beha-

viour. The deformed shape from the analysis above (blue line in Figure A.1.3) is used as form
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Figure A.1.3 — Axial- and reaction forces in [kN] for the catenary obtained from K2Engineering

diagram and the corresponding force diagram is drawn from the size of the applied load as seen
in Figure A.1.4. The necessary forces in the bars to ensure equilibrium are extracted from the
length of the lines in the force diagram and it is observed that they match the values from the
K2Engineering plug-in. The reaction forces are extracted from the force diagram as well (the
horizontal reaction force component is equal to the width and the vertical component to half of

the height) and similarly show a nice correspondence.
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Figure A.1.4 — Analytical solution for the catenary using graphic statics (left: form, right: force polygon). The
forces are in [kN].

A.1.4 Catenary with prestress

The same catenary shape and properties from Table A.1.3 are used in this example but in this
case the cable is pretensioned with a force of P = 200 kN. The pretensioning is expected to

increase the axial- and reaction forces but reduce the deflection.
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K2ENGINEERING

The result from the K2Engineering plug-in is shown in Figure A.1.5. The maximum displacement
at the middle is 10.4 mm.

N p
\ V.

{-257.0,450.0, 0.0} {257.0, 4500, 0.0}
\ /

Figure A.1.5 — Axial- and reaction forces in [kN] for the prestressed catenary obtained from K2Engineering

KARAMBA

This is compared to the results obtained from a Karamba analysis using the same material
properties, point loads and a pretension load. Karamba specifies the pretension load as a strain

value [mm/m] for each element, which in this case is equal to (referring to Equation 4.3.1)

_200-10%-1-10% __
€= 519057551 = 12.126 mm/m

The result from a second order analysis in Karamba is shown in Figure A.1.6 and the maximum
displacement at the middle is 10.4 mm. Again it is observed that the results from the two

analysis are consistent and in accordance with the expected behaviour from prestress.

{25618, 450.0, 0.0}

+.261.6 | 261.6*

Figure A.1.6 — Axial and reaction forces in [kN] for the prestressed catenary obtained from Karamba

A.1.5 Truss

A truss of height 0.5 m and a span of 5.0 m is simply supported at its ends and subjected to its
self-weight and a point load at the middle. Table A.1.4 shows the properties that are used for
the set-up.
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] Span ‘ Cross section ‘ Area ‘ Young’s modulus ‘ Point load ‘ Density ‘

[50m | 50x3mm [ 443 mm’ | 21-10° MPa | 100 kN | 7850 kg/m® |

Table A.1.4 — Properties used for the truss example

K2ENGINEERING

The axial forces and reaction forces from the K2Engineering analysis are shown in Figure A.1.7.

The maximum deflection at the middle is 28.8 mm.

-50 =101 =151 201 _751 _251 2001 _151 101 -50
30 %1 30 N0 80 N 51 N B N1 -1p3 77 B 7 41 4 g0 74§00 7 40
5 101 1531 201 201 151 101 A1

1 1
{0.0, 50.4, 0.0} {0.0, 50.4, 0.0}

Figure A.1.7 — K2Engineering truss example. Axial and reaction forces in [kN]. Red = compression and blue
= tension
KARAMBA

The forces are similarly shown for an analysis performed with Karamba as seen in Figure A.1.8.

The maximum delfection at the middle is 28.9 mm.

{0.0, 50.4, 0.0} {0.7,50.4, 0.0}
Figure A.1.8 — Karamba truss example where the colours express the utilisation of the elements. The axial and

reaction forces are in [kN]

The same result is obtained from the two different tools.

A.2 Bending behaviour

A.2.1 Simple supported beam

A 1.0 m beam is simple supported and subjected to a uniform distributed load. Table A.2.1
shows the properties that are used for the set-up.

’ Length ‘ Segment length ‘ Profile ‘ Young’'s modulus ‘ uUDL ‘
[10m | 005m [ CHS50 | 21-10°MPa | 15.0 kN/m |

Table A.2.1 — Properties used for the simple supported beam example
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K2ENGINEERING

A moment and shear plot of the simple supported beam from the K2Engineering analysis are

shown in Figure A.2.1 and Figure A.2.2. The maximum displacement at the middle is 3.6 mm.

{0.0, 0[0, 7.5} {0.0, 0[0, 7.5}

1.00
[ 0.68 12 1.58 T8 1.88 118 T.58 T2 0.68 ]

Figure A.2.1 - Simple supported beam with moment plot from K2Engineering. The moments are given in
[kNm], the length measurement in [m] and reaction forces in [kN]

-

Figure A.2.2 — Simple supported beam with shear plot from K2Engineering. The shear forces are given in [kN]

ANALYTICAL

The moment distribution along the beam is calculated by hand from M(z) =1 ¢ -z - (L — z),
where ¢ is the uniform distributed load, L is the beam length and =z is the distance along the

beam.

The moments along the beam from the left to the middle are as follows:
M(@O0)=0kNm

M (100) = £ - 15100 - (1000 — 100) = 0.675 kN'm
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M (200) = £ -15-200 - (1000 — 200) = 1.20 kNm
M(300) = 1 -15-300- (1000 — 300) = 1.575 kNm
M (400) = § - 15 - 400 - (1000 — 400) = 1.80 kNm
M (500) = 3 - 15500 - (1000 — 500) = 1.875 kNm

The vertical reaction forces: R=1.¢-L=13-15-1=75kN

The shear force is calculated from V(z) = R — ¢ - , where z is measured to the midpoint of a
segment. This gives the following:

V(0.025) = 7.5 —15-0.025 = 7.13 kN

V(0.225) = 7.5 —15-0.225 = 4.13 kN

V(0.475) = 7.5 — 15-0.475 = 0.38 kN

The maximum deflection is calculated from

_ 5 _gqL* _ 5 15-1000* _
Umar = 387 ° BT = 381 " 311050263005 — 9-0 MM

It is observed that there is a good correspondence between the results obtained from the

K2Engineering analysis and the analytical solution.

A.2.2 Cantilever beam

A 1.0 m beam cantilevers from one end. At this location, two consecutive points are pinned in
order to mimic a fixed support in a 3 DoF system. This has the effect of creating a reaction
force couple, which is equivalent to the reaction moment that would have otherwise occurred
from a fixed support. A vertical point load is applied to the tip of the beam. Table A.2.2 shows
the properties that are used for the set-up.

] Length \ Segment length \ Profile \ Young's modulus \ Point load \
[ 1.0m [ 005m  [CHS50[ 21-10°MPa | 1.0kN |

Table A.2.2 — Properties used for the cantilever example

K2ENGINEERING

A moment and shear plot of the cantilever beam from the K2Engineering analysis are shown in

Figure A.2.3 and Figure A.2.4. The maximum displacement at the free end is 6.5 mm.

The right reaction force is 1 kN larger than the left reaction force and corresponds to the vertical
reaction force from the point load. The reaction moment is calculated from the force couple and
the segment length as R, = 20.0 kN -0.05 m =1 kNm.
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Figure A.2.3 — Cantilever beam with moment plot from K2Engineering. The moments are given in [kNm], the
length measurement in [m] and reaction forces in [kN]

1.00

Figure A.2.4 — Cantilever beam with shear plot from K2Engineering. The shear forces are given in [kN] and
the length measurement in [m]

ANALYTICAL

The moment distribution along the beam is calculated by hand from M (z) = —F - z, where F

is the point load and x is the distance along the beam (away from the load).
The moments along the beam from left to right are as follows:

M(1000) = 1-10%- 1000 = 1.0 kNm

M(900) =1-10%-900 = 0.9 kNm

M(800) =1-10%-800 = 0.8 kNm

M(100) =1-10%-100 = 0.1 kNm

The shear force is constant along the beam length and is equal to the applied point load of 1
kN. The vertical reaction force at the support is similarly equal to the magnitude of the point

load and the reaction moment equal to M (1000).
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The maximum deflection is calculated from

_ 1 FL® _ 1 1-10%-1000%
dmazr = 3 BT = 3 51.1050.202.006 — 0-1 mm

It is observed that there is a good correspondence between the results obtained from the
K2Engineering analysis and the analytical solution. Only a small deviation with regard to

the maximum displacement at the end is noticed.

A.2.3 Frame

A rigid frame of height 2.0 m and a span of 5.0 m is pinned at its ends and subjected to self-
weight and a point load at the middle. Table A.2.3 shows the properties that are used for the

set-up.
’ Length \ Height \ Profile \ Young's modulus \ Point load \ Density ‘
| 5.0m [ 20m [ CHS50 | 21-10°MPa | 1.5kN [ 7850 kg/m® |
Table A.2.3 — Properties used for the frame example
K2ENGINEERING

A moment and shear plot of the frame from the K2Engineering analysis are shown in Figure
A.2.5 and Figure A.2.6. The maximum moment is located at the middle of the frame where it
is also observed that the shear force changes sign. The maximum displacement at the middle is

31.7 mm and the biggest compression force is -1.0 kN at the bottom of the frame.

0.83 lll'lf 1.21 ll'lll 0.83
o
I~
[aN]
E =
{0.42, 0.0, 0.98} {-0.42, 0.0, 0.98}
- 5.00 —

Figure A.2.5 — Frame with moment plot from K2Engineering. The moments are given in [kNm], the length
measurements in [m] and reaction forces in [kN]
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Figure A.2.6 — Frame with shear plot from K2Engineering. The shear forces are given in [kN] and the length
measurements in [m]

KARAMBA

A moment and shear plot of the frame from the Karamba analysis are similarly shown in Figure
A.2.7 and Figure A.2.8. The maximum displacement at the middle is 32.4 mm and the maximum
compression force at the bottom of the frame is -1.0 kN.

By comparing the results from the two analysis, it is observed that the normal-, shear- and
reaction forces as well as the moments are identical and only a small difference with regard to

the maximum displacement at the middle exists.

2.00

- 5.00 -

Figure A.2.7 — Frame with moment plot from Karamba. The moments are given in [kNm], the length meas-
urements in [m] and reaction forces in [kN]
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Figure A.2.8 — Frame with shear plot from Karamba. The shear forces are given in [kN] and the length
measurements in [m]

A.2.4 Arch

An arch with a span of 5.0 m is pinned at its ends and subjected to self-weight and an uniform
distributed load. Table A.2.4 shows the properties that are used for the set-up.

’ Length ‘ Profile ‘ Young’'s modulus ‘ uDL ‘ Density ‘
[ 50m [ CHS50 | 2.1-10° MPa | 25kN/m [ 7850 kg/m’ |

Table A.2.4 — Properties used for the arch example

K2ENGINEERING

A moment and shear plot of the arch from the K2Engineering analysis are shown in Figure
A.2.9 and Figure A.2.12. The maximum displacement at the middle is 27.2 mm and the biggest

compression force is -9.8 kN at the bottom of the arch.
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Figure A.2.9 — Arch with moment plot from K2Engineering. The moments are given in [kNm], the length
measurement in [m] and reaction forces in [kN]

- 5.00 -

Figure A.2.10 — Arch with shear plot from K2Engineering. The shear forces are given in [kN] and the length
measurement in [m]

KArRAMBA

A moment and shear plot of the arch from the Karamba analysis are similarly shown in Figure
A.2.11 and Figure A.2.12. The maximum displacement at the middle is 27.0 mm and the

maximum compression force at the bottom of the arch is -9.9 kN.

Again, it is observed that the results from the two analysis are identical.
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Figure A.2.11 — Arch with moment plot from Karamba. The moments are given in [kNm], the length meas-
urement in [m] and reaction forces in [kN]

- 5.00 —

Figure A.2.12 — Arch with shear plot from Karamba. The shear forces are given in [kN] and the length
measurement in [m]

A.3 Buckling

A.3.1 Column

A 1.0 m tall column is pinned at the bottom and free to move in the vertical direction at the

top and subjected to a normal force. The properties used for the set-up is shown in Table A.3.1.
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’ Length ‘ Buckling length ‘ Diameter ‘ Young's modulus ‘ Vertical load ‘ Horizontal load ‘

]1.0m\ 10m \ 6 mm \ 45 000 MPa \ 1N \ 0.01 N \

Table A.3.1 — Properties used for the column buckling example

K2ENGINEERING

A small horizontal load is applied at the middle of the column in order to cause an out-of-plane
buckling behaviour. The magnitude of this load is constant throughout the buckling analysis.
The result is illustrated in Figure A.3.1 where the black line indicates the initial configuration
and the blue curve is the shape after the first sudden change in displacements. The buckling

load factor is estimated to 33.0 with a maximum displacement at the middle of 25 mm.

Q

O

Figure A.3.1 — Column buckling behaviour from K2Engineering

ANALYTICAL

The critical load is determined by:

2 2
_ o -45000-63.62 __
Ny = 8L = 2 4500063.62 — 98 9 )y

Since the applied load equals 1.0 N, this corresponds to a buckling load factor of 28.2.

The buckling load factor from the non-linear analysis is observed to be on the unsafe side of the

analytical solution but within an acceptable range.
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Appendix B

K2Engineering overview
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Figure B.0.1 — K2Engineering components
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This appendix provides an overview of the developed K2Engineering plug-in with all its com-

ponents.

|

Component name ‘

Functionality

Bar

Creates a bar goal, which provides axial stiffness in both tension and
compression

Cable

Creates a cable goal, which provides axial stiffness in tension only

Rod

Creates a rod goal, which provides bending stiffness to resist
out-of-plane forces

Table B.0.1 — Element components

Component name ‘

Functionality

Support

Creates a support goal to restrict the movement in the X, Y and Z
directions of a selected point

Table B.0.2 - Support component

Component name ‘

Functionality

BarSelfweight Calculates the lumped nodal forces from a list of lines, cross section
area and the material density

MeshSelfweight Calculates the lumped nodal forces from a triangulated mesh based
on the vertex voronoi area, thickness and material density

MeshSnowLoad Calculates the lumped nodal forces from a triangulated mesh based
on the projected vertex voronoi area and a snow load

MeshWindLoad Calculates the lumped nodal forces from a triangulated mesh based
on the vertex voronoi area, a wind load and direction. The vertex
normals are projected onto the wind direction to distinguish between
pressure and suction

Load Creates a load goal to apply the forces to the K2 simulation

Table B.0.3 — Load components

Component name ‘

Functionality

BucklingAnalysis

Performs a non-linear buckling analysis from the specification of
permanent goals and load goals. The load goals are incrementally
increased in between the equilibrium iterations and the displacements
simultaneously traced

Table B.0.4 — Analysis component
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Component name ‘

Functionality

Displacements

Measures the distance between the points in the initial configuration
and the updated configuration from the simulation. The existing K2
goal “show"” is useful in this context to maintain a consistent particle
order

Shear Calculates the shear forces based on the moments that occur in each
end of a line segment. The magnitude of the vector corresponds to
the shear value

StressSum Calculates the total stress per line segment as a summation of the

axial and bending stresses

Table B.0.5 - Results components

Component name

Functionality

|

AxialVisualisation

Displays the axial forces in the structure by colouring the lines (red =
compression, blue = tension, green = neutral) and scaling the line
widths according to the magnitude of the forces

BendingVisualisation

Displays the bending moments as coloured lines (blue = low, green =
medium, red = high) in the bending planes with scaled lengths
according to the magnitude of the moments

LoadVisualisation

Displays the loads at the updated particle positions

ShearVisualisation

Displays the shear forces as coloured lines (blue = low, green =
medium, red = high) perpendicular to each line segment and scaled
according to the magnitude of the shear forces

Table B.0.6 — Display components

Component name

Functionality

CastBarOutput Extracts the output from the bar/cable goal: start and end particle
indexes, updated line, axial force and stress

CastRodOutput Extracts the output from the rod goal: particle index of the shared
vertex between the two consecutive lines, the bending plane, moment
and stress

CastSupportOutput Extracts the output from the support goal: the position and reaction
force

CastLoadOutput Extracts the output from the load goal: updated position and the
load vector itself

CircularCS Calculates the area, moment of inertia and distance to the outer fibre

for a circular cross section

RectangularCS

Calculates the area, moment of inertia and distance to the outer fibre
for a rectangular cross section

Table B.0.7 — Utility components
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